Skip to main content
Log in

The Condition of Applicability for the Extended Boundary Conditions Method for Small Multilayer Particles

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We have examined an analog to the extended boundary conditions method (EBCM) with the standard spherical basis, which is popular in light scattering theory, with respect to its applicability to the solution of an electrostatic problem that arises for multilayer scatterers the sizes of which are smaller compared to the wavelength of the incident radiation. It has been found that, in the case of two or more layers, to determine the polarizability and other optical characteristics of particles in the far-field zone, the parameters of the surfaces of layers should obey the condition max{σ1 (j)} < min{σ2 (j)}. In this case, appearing infinite systems of linear equations for expansion coefficients of unknown fields have a unique solution, which can be found by the reduction method. For nonspheroidal particles, this condition is related to the convergence radii of expansions of regular and irregular fields outside and inside of the particle, including its shells—R 1 (j) = σ1 (j) and R 2 (j) = σ2 (j). In other words, a spherical shell should exist in which expansions of all regular and irregular fields converge simultaneously. This condition is a natural generalization of the result for homogeneous particles, for which such a condition is imposed only on expansions of the “scattered” and internal fields—R 1 < R 2. For spheroidal multilayer particles, which should be singled out into a separate class, the EBCM applicability condition is written as max{σ1 (1), σ1 (2), …, σ1 (J−1), σ1 (J)} < min{σ2 (1), σ2 (2), …, σ2 (J−1)} and parameters σ2 (j) of the surfaces of shells are not related to corresponding convergence radii R 2 j of irregular fields. Numerical calculations for two-layer spheroids and pseudospheroids have confirmed completely theoretical inferences. Apart from the EBCM algorithm, an approximate formula has been proposed for the calculation of the polarizability of two-layer particles, in which the polarizability of a two-layer particle is interpreted as a linear combination of the polarizabilities of homogeneous particles that consist of the materials of the shell and core proportionally to their volumes. The range of applicability of this formula is wider than that for the EBCM, and the calculation error is smaller than 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  2. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuos Media (Pergamon, New York, 1960).

    Google Scholar 

  3. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

    Google Scholar 

  4. V. G. Farafonov, Opt. Spectrosc. 88, 441 (2000).

    Article  ADS  Google Scholar 

  5. V. G. Farafonov, Opt. Spectrosc. 90, 574 (2001).

    Article  ADS  Google Scholar 

  6. V. G. Farafonov and M. V. Sokolovskaya, J. Math. Sci. 194, 104 (2013).

    Article  MathSciNet  Google Scholar 

  7. V. G. Farafonov and V. B. Il’in, Opt. Spectrosc. 115, 745 (2013).

    Article  ADS  Google Scholar 

  8. V. G. Farafonov, A. A. Vinokurov, and S. V. Barkanov, Opt. Spectrosc. 111, 980 (2011).

    Article  Google Scholar 

  9. V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, J. Quant. Spectr. Rad. Transfer 79–80, 599 (2003).

    Article  Google Scholar 

  10. V. G. Farafonov and V. B. Il’in, Opt. Spectrosc. 100, 437 (2006).

    Article  ADS  Google Scholar 

  11. V. G. Farafonov, V. B. Il’in, and A. A. Vinokurov, Opt. Spectrosc. 109, 432 (2010).

    Article  ADS  Google Scholar 

  12. V. G. Farafonov and A. A. Vinokurov, Opt. Spectrosc. 105, 292 (2008).

    Article  ADS  Google Scholar 

  13. A. A. Vinokurov, V. G. Farafonov, and V. B. Il’in, J. Quant. Spectr. Rad. Transfer 110, 1356 (2009).

    Article  ADS  Google Scholar 

  14. P. C. Waterman, J. Appl. Phys. 50, 4550 (1979).

    Article  ADS  Google Scholar 

  15. V. G. Farafonov, Opt. Spectrosc. 117, 923 (2014).

    Article  ADS  Google Scholar 

  16. V. G. Farafonov and V. I. Ustimov, Opt. Spectrosc. 118, 445 (2015).

    Article  ADS  Google Scholar 

  17. V. G. Farafonov and V. I. Ustimov, Opt. Spectrosc. 119, 855 (2015).

    Article  ADS  Google Scholar 

  18. V. G. Farafonov and V. I. Ustimov, Opt. Spectrosc. 119, 1022 (2015).

    Article  ADS  Google Scholar 

  19. V. G. Farafonov, Opt. Spectrosc. 88, 63 (2000).

    Article  ADS  Google Scholar 

  20. V. G. Farafonov and V. B. Il’in, in Light Scattering Reviews, Ed. by A. A. Kokhanovsky (Springer-Praxis, Berlin, 2006).

  21. V. G. Farafonov, V. B. Il’in, M. V. Sokolovskaya, and E. G. Semenova, Proc. SPIE—Int. Soc. Opt. Eng. 906507, 10 (2013).

    Google Scholar 

  22. A. G. Kyurkchan and N. I. Smirnova, Mathematical Modeling in Diffraction Theory: Based on A Priori Information on the Analytical Properties of the Solution (ID Media, Moscow, 2014; Elsevier Science, Amsterdam, 2015).

    MATH  Google Scholar 

  23. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Calculus (Fizmatgiz, Moscow, 1962) [in Russian].

    MATH  Google Scholar 

  24. V. G. Farafonov, in Light Scattering Reviews 8, Ed. by A. A. Kokhanovsky (Springer-Praxis, London, 2013).

  25. V. B. Il’in and V. G. Farafonov, Opt. Lett. 36, 4080 (2011).

    Article  ADS  Google Scholar 

  26. V. G. Farafonov and V. B. Il’in, J. Quant. Spectr. Rad. Transfer 146, 244 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Farafonov.

Additional information

Original Russian Text © V.G. Farafonov, V.I. Ustimov, M.V. Sokolovskaya, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 3, pp. 470–483.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farafonov, V.G., Ustimov, V.I. & Sokolovskaya, M.V. The Condition of Applicability for the Extended Boundary Conditions Method for Small Multilayer Particles. Opt. Spectrosc. 120, 448–460 (2016). https://doi.org/10.1134/S0030400X16030073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16030073

Keywords

Navigation