Skip to main content
Log in

Light transmission of polymer-dispersed liquid crystal layer composed of droplets with inhomogeneous surface anchoring

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We have developed a model and realized an algorithm for the calculation of the coefficient of coherent (direct) transmission of light through a layer of liquid crystal (LC) droplets in a polymer matrix. The model is based on the Hulst anomalous diffraction approximation for describing the scattering by an individual particle and the Foldy-Twersky approximation for a coherent field. It allows one to investigate polymer dispersed LC (PDLC) materials with homogeneous and inhomogeneous interphase surface anchoring on the droplet surface. In order to calculate the configuration of the field of the local director in the droplet, the relaxation method of solving the problem of minimization of the free energy volume density has been used. We have verified the model by comparison with experiment under the inverse regime of the ionic modification of the LC-polymer interphase boundary. The model makes it possible to solve problems of optimization of the optical response of PDLC films in relation to their thickness and optical characteristics of the polymer matrix, sizes, polydispersity, concentration, and anisometry parameters of droplets. Based on this model, we have proposed a technique for estimating the size of LC droplets from the data on the dependence of the transmission coefficient on the applied voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Blinov and V. G. Chigriniv, Electrooptic Effects in Liquid Crystal Materials (Springer, New York, 1993).

    Google Scholar 

  2. G. P. Crawford, Flexible Flat Panel Displays, (Wiley, Hoboken, 2005).

    Book  Google Scholar 

  3. J. A. Castellano, Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry (World Scientific, Singapore, 2005).

    Book  Google Scholar 

  4. F. Simoni, Nonlinear Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific, Singapore, 1997).

    Book  Google Scholar 

  5. L. W. MacDonald and A. C. Lowe, Display Systems, (Wiley, New York, 1997).

    Google Scholar 

  6. V. G. Chigrinov, Liquid Crystal Devices: Physics and Application (Artech House, Boston, London, 1999).

    Google Scholar 

  7. G. E. Volovik and O. D. Lavrentovich, Sov. Phys. JETP 58, 1159 (1983).

    Google Scholar 

  8. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

    Book  Google Scholar 

  9. J. L. West, J. W. Doane, and S. Zumer, US Patent No. 4685771 (1987).

    Google Scholar 

  10. V. K. Freedericksz and V. Zolina, Trans. Faraday Soc. 29, 919 (1933).

    Article  Google Scholar 

  11. E. Dubois-Violette and P. G. de Gennes, J. Phys. Lett. 36, L255 (1975).

    Article  Google Scholar 

  12. L. M. Blinov, E. I. Kats, and A. A. Sovin, Sov. Phys. Usp. 30, 604 (1987).

    Article  ADS  Google Scholar 

  13. G. Ryschenkow and M. Kl-man, J. Chem. Phys. 64, 404 (1976).

    Article  ADS  Google Scholar 

  14. L. M. Blinov, N. N. Davydova, A. A. Sonin, et al., Sov. Phys. Crystallogr. 29, 320 (1984).

    Google Scholar 

  15. L. Komitov, B. Helgee, and J. Felix, Appl. Phys. Lett. 86, 023502 (2005).

    Article  ADS  Google Scholar 

  16. V. Ya. Zyryanov, M. N. Krakhalev, O. O. Prishchepa, and A. V. Shabanov, JETP Lett. 86, 383 (2007).

    Article  ADS  Google Scholar 

  17. V. Ya. Zyryanov, M. N. Krakhalev, and O. O. Prishchepa, JETP Lett. 88, 597 (2008).

    Article  ADS  Google Scholar 

  18. A. Walther and A. Muller, Soft Matter 4, 663 (2008).

    Article  ADS  Google Scholar 

  19. A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, and E. Duguet, J. Mater. Chem. 15, 3745 (2005).

    Article  Google Scholar 

  20. F. Basile, F. Bloisi, L. Vicari, and F. Simoni, Phys. Rev. E 48, 432 (1993).

    Article  ADS  Google Scholar 

  21. V. V. Presnyakov and T. V. Galstian, Mol. Cryst. Liq. Cryst. 413, 435 (2004).

    Article  Google Scholar 

  22. V. A. Loiko and A. V. Konkolovich, J. Exp. Theor. Phys. 103, 935 (2006).

    Article  ADS  Google Scholar 

  23. V. A. Loiko and V. I. Molochko, Tech. Phys. 44, 1340 (1999).

    Article  Google Scholar 

  24. J. D. Klett and R. A. Sutheland, Appl. Opt. 31, 373 (1997).

    Article  ADS  Google Scholar 

  25. S. Zumer, Phys. Rev. A 37, 4006 (1988).

    Article  ADS  Google Scholar 

  26. D. A. Yakovlev and O. A. Afonin, Opt. Spectrosc. 82, 78 (1997).

    ADS  Google Scholar 

  27. V. A. Loiko, P. G. Maksimenko, and A. V. Konkolovich, Opt. Spectrosc. 105, 791 (2008).

    Article  ADS  Google Scholar 

  28. A. D. Kiselev, O. V. Yaroshchuk, and L. Dolgov, J. Phys.: Condens. Matter 16, 183 (2004).

    Google Scholar 

  29. A. P. Ivanov, A. V. Loiko, and V. P. Dik, Light Propagation in Densely-Packed Dispersed Media (Nauka Tekhnika, Minsk, 1988).[in Russian].

    Google Scholar 

  30. V. A. Loiko, U. Maschke, V. Ya. Zyryanov, A. V. Konkolovich, and A. A. Miskevich, Opt. Spectrosc. 110, 110 (2011).

    Article  ADS  Google Scholar 

  31. A. Khan, I. Shiyanovskaya, T. Schneider, et al., J. SID 15, 9 (2007).

    Google Scholar 

  32. M. N. Krakhalev, V. A. Loiko, and V. Ya. Zyryanov, Tech. Phys. Lett. 37, 34 (2011).

    Article  ADS  Google Scholar 

  33. O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A.M. Parshin, and V. G. Nazarov, JETP Lett. 84, 607 (2006).

    Article  ADS  Google Scholar 

  34. A. Mertelj and M. Copic, Phys. Rev. E 75, 011705 (2007).

    Article  ADS  Google Scholar 

  35. O. O. Prishchepa, M. Kh. Egamov, V. P. Gerasimov, et al., Izv. Vyssh. Uchebn. Zaved., Fiz. 56 (2/2), 258 (2013).

    Google Scholar 

  36. A. Ishimaru, Propagation and Scattering of Waves in Random Media (Academic, New York, 1978; Mir, Moscow, 1981).

    MATH  Google Scholar 

  37. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981; Inostr. Liter., Moscow, 1961).

    Google Scholar 

  38. L. G. Apresyan and Yu. A. Kravtsov, Radiation Transfer (Gordon Breach, Basel, Switzerland, 1996; Nauka, Moscow, 1983).

    MATH  Google Scholar 

  39. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978).[in Russian].

    MATH  Google Scholar 

  40. E. F. Ishchenko and A. L. Sokolov, Polarizing Optics (Mosk. Energet. Inst., Moscow, 2005).[in Russian].

    Google Scholar 

  41. A. Yu. Val-kov, E. V. Aksenova, and V. P. Romanov, Phys. Rev. E 87, 022508 (2013).

    Article  ADS  Google Scholar 

  42. O. O. Prishchepa and A. V. Shabanov, JETP Lett. 84, 723 (2006).

    Google Scholar 

  43. Yu. G. Soloveichik, M. E. Royak, and M. G. Persova, Finite Element Method for Solving Scalar and Vector Problems (Novosib. Gos. Tekh. Univ., Novosibirsk, 2007).[in Russian].

    Google Scholar 

  44. M. N. Krakhalev, V. A. Loiko, and V. Ya. Zyryanov, Tech. Phys. Lett. 37, 34 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Loiko.

Additional information

Original Russian Text © V.A. Loiko, V.Ya. Zyryanov, A.V. Konkolovich, A.A. Miskevich, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 1, pp. 158-168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiko, V.A., Zyryanov, V.Y., Konkolovich, A.V. et al. Light transmission of polymer-dispersed liquid crystal layer composed of droplets with inhomogeneous surface anchoring. Opt. Spectrosc. 120, 143–152 (2016). https://doi.org/10.1134/S0030400X16010112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16010112

Keywords

Navigation