Skip to main content
Log in

OCT Study of Optical Clearing of Muscle Tissue in vitro with 40% Glucose Solution

  • Optics and Spectroscopy in Biophysics and Medicine
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The technique of -optical clearing of biological tissues- is aimed at improving the quality of visualization of structures hidden deep in tissue. In this study, we measured the diffusion coefficient of glucose in bovine skeletal muscle tissue by optical coherence tomography (OCT) in vitro and determined changes that took place in the imaging contrast of muscle fibers, the optical depth of coherent probing, and detection under the influence of aqueous 40% solution of glucose. It was shown that, within 90 min, when the depth of coherent probing increased by 14%, the contrast of OCT images increased fourfold and the depth of coherent detection of structural elements of the tissue increased by 2.4 times. The diffusion coefficient of glucose in the muscle tissue was (2.98 ± 0.94) × 10-6 cm2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Tuchin, Handbook of Optical Biomedical Diagnostics, SPIE Press Monographs, Vol. 107 (Bellingham, SPIE Press, 2002).

    Google Scholar 

  2. T. Vo-Dinh, Biomedical Photonics Handbook, (CRC Press, Boca Raton, 2003).

    Book  Google Scholar 

  3. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Press Monograph, Vol. 166 (Fizmatlit, Moscow, 2012; SPIE Publ., 2007).

    Book  Google Scholar 

  4. P. T. C. So, C. Y. Dong, and B. R. Masters, in Biomedical Photonics Handbook, Ed. by T. Vo-Dinh (CRC, Boca Raton, FL, 2003).

  5. F. S. Pavone and P. J. Campagnola, Second Harmonic Generation Imaging, (Taylor and Francis Group, CRC Press, Boca Raton, 2014).

    Google Scholar 

  6. R. K. Wang and V. V. Tuchin, in Handbook of Coherent- Domain Optical Methods. Biomedical Diagnostics, Environmental Monitoring, and Material Science, 2nd ed., Ed. by V. V. Tuchin (Springer, New York, Heidelberg, Dordrecht, London, 2013). Vol. 2.

  7. N. D. Gladkova, N. M. Shakhova, and A. M. Sergeeva, Practical Guide on Optical Coheren Tomography (Fizmatlit, Moscow, 2007).[in Russian].

    Google Scholar 

  8. V. V. Tuchin, Optical Clearing of Tissues and Blood, SPIE Press Monograph, Vol. 154 (SPIE Press, Belligham, 2006).

    Google Scholar 

  9. S. G. Proskurin and I. V. Meglinski, Laser Phys. Lett. 4, 824 (2007).

    Article  ADS  Google Scholar 

  10. Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, J. Biomed. Opt. 16, 116018 (2011).

    Article  ADS  Google Scholar 

  11. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, Expert Rev. Med. Dev. 7, 825 (2010).

    Article  Google Scholar 

  12. K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, IEEE J. Sel. Top. Quantum Electron. 18, 1244 (2012).

    Article  Google Scholar 

  13. X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, J. Biomed. Opt. 17, 066022 (2012).

    Article  ADS  Google Scholar 

  14. E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, J. Biomed. Photon. Eng. 1, 22 (2015).

    Article  Google Scholar 

  15. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, Ed. by V. V. Tuchin (Taylor Francis Group, CRC Press, Boca Raton, 2009). p. 657.

  16. M. G. Ghosn, V. V. Tuchin, and K. V. Larin, Opt. Lett. 31, 2314 (2006).

    Article  ADS  Google Scholar 

  17. M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, J. Biophoton. 3, 25 (2010).

    Article  Google Scholar 

  18. E. A. Genina, A. N. Bashkatov, K. V. Larin, T. G. Kamenskikh, and V. V. Tuchin, Quantum Electron. 41, 407 (2011).

    Article  ADS  Google Scholar 

  19. X. Guo, G. Wu, H. Wei, X. Deng, H. Yang, Y. Ji, Y. He, Z. Guo, S. Xie, H. Zhong, Q. Zhao, and Z. Zhu, Photochem. Photobiol. 88, 311 (2012).

    Article  Google Scholar 

  20. M. G. Ghosn, E. F. Carbajal, N. A. Befrui, A. Tellez, J. F. Granada, and K. V. Larin, J. Biomed. Opt. 13, 010505 (2008).

    Article  ADS  Google Scholar 

  21. H. Q. Zhong, Z. Y. Guo, H. J. Wei, C. C. Zeng, H. L. Xiong, Y. H. He, and S. H. Liu, Laser Phys. Lett. 7, 315 (2010).

    Article  ADS  Google Scholar 

  22. Q. L. Zhao, J. L. Si, Z. Y. Guo, H. J. Wei, H. Q. Yang, G. Y. Wu, S. S. Xie, X. Y. Li, X. Guo, H. Q. Zhong, and L. Q. Li, Laser Phys. Lett. 8, 71 (2011).

    Article  ADS  Google Scholar 

  23. Z. Zhu, G. Wu, H. Wei, H. Yang, Y. He, S. Xie, Q. Zhao, and X. Guo, J. Biophoton. 5, 1 (2012).

    Article  Google Scholar 

  24. D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin, J. Biophoton. 8, 332 (2015).

    Article  Google Scholar 

  25. R. Dickie, R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. de Loid, J. Lai, R. A. de Pinho, and R. A. Rogers, Microvasc. Res. 72, 20 (2006).

    Article  Google Scholar 

  26. S. Plotnikov, V. Juneja, A. B. Isaacson, W. A. Mohler, and P. J. Campagnola, Biophys. J. 90, 328 (2006).

    Article  ADS  Google Scholar 

  27. O. Nadiarnykh and P. J. Campagnola, Opt. Express 17, 5794 (2009).

    Article  ADS  Google Scholar 

  28. R. LaComb, O. Nadiarnykh, S. Carey, and P. J. Campagnola, J. Biomed. Opt. 13, 021109 (2008).

    Article  ADS  Google Scholar 

  29. O. Nadiarnykh and P. J. Campagnola, in Second Harmonic Generation Imaging, Ed. by F. S. Pavone and P. J. Campagnola (Taylor and Francis Group, CRC Press, Boca Raton, London, New York, 2014). pp. 169–189.

  30. L. M. Oliveira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, Laser Phys. 23, 075606 (2013).

    Article  ADS  Google Scholar 

  31. L. Oliveira, M. I. Carvalho, E. Nogueira, and V. V. Tuchin, J. Innovative Opt. Health Sci. 6, 1350012 (2013).

    Article  Google Scholar 

  32. D. K. Tuchina, A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, J. Innovative Opt. Health Sci. 8, 1541006 (2015).

    Article  Google Scholar 

  33. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, Opt. Express 12, 4353 (2004).

    Article  ADS  Google Scholar 

  34. P. Lee, W. Gao, and X. Zhang, Appl. Opt. 49, 3538 (2010).

    Article  ADS  Google Scholar 

  35. T. T. Berezov and B. F. Korovkin, Biological Chemistry (Meditsina, Moscow, 1998).[in Russian].

    Google Scholar 

  36. S. Schiaffino and C. Reggiani, Physiol. Rev. 91, 1447 (2011).

    Article  Google Scholar 

  37. S. Larsen, J. Nielsen, C. N. Hansen, L. B. Nielsen, F. Wibrand, N. Stride, H. D. Schroder, R. Boushel, J. W. Helge, F. Dela, and M. Hey-Mogensen, J. Physiol. 590, 3349 (2012).

    Article  Google Scholar 

  38. J. J. J. Dirckx, L. S. Kuypers, and W. F. Decraemer, J. Biomed. Opt. 10, 044014 (2005).

    Article  ADS  Google Scholar 

  39. L. Oliveira, A. Lage, M. Pais Clemente, and V. V. Tuchin, Opt. Lasers Eng. 47, 667 (2009).

    Article  Google Scholar 

  40. R. C. Haskell, F. D. Carlson, and P. S. Blank, Biophys. J. 56, 401 (1989).

    Article  Google Scholar 

  41. R. Thar and M. Kuhl, J. Theor. Biol. 230, 261 (2004).

    Article  Google Scholar 

  42. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, Appl. Opt. 37, 3586 (1998).

    Article  ADS  Google Scholar 

  43. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, Ed. by V. V. Tuchin (Taylor & Francis Group LLC, CRC Press, Boca Raton, 2009). pp. 587–621.

  44. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  45. J. M. Schmitt and G. Kumar, Appl. Opt. 37, 2788 (1998).

    Article  ADS  Google Scholar 

  46. B. D. Bunday, Basic Optimization Methods (Arnold, London, 1984).

    Google Scholar 

  47. S. G. Proskurin, Quantum Electron. 42, 495 (2012).

    Article  ADS  Google Scholar 

  48. E. A. Genina, G. S. Terentyuk, B. N. Khlebtsov, A. N. Bashkatov, and V. V. Tuchin, Quantum Electron. 42, 478 (2012).

    Article  ADS  Google Scholar 

  49. N. Ignatieva, I. Andreeva, V. Lunin, O. Zakharkina, E. Sobol, and V. Kamensky, Lasers Surg. Med. 40, 422 (2008).

    Article  Google Scholar 

  50. W. Schneider, T. Bortfeld, and W. Schlegel, Phys. Med. Biol. 45, 459 (2000).

    Article  Google Scholar 

  51. Veterinary medicine for all. Meat features of different species of animals, birds and wildfowl with fat constants. http://vetfacnarodru/otlichija0mjasahtm. Cited July 1, 2015.

  52. A. V. Lykov, Transport Phenomena in Capillary-Porous Bodies (Gos. Izdat. Tekh.-Teor. Liter., Moscow, 1954).[in Russian].

    Google Scholar 

  53. S. L. Kuznetsov, N. N. Mushkambarov, and V. L. Goryachkina, Guide-Atlas of Histology, Cytology and Embryology. http://nsaueduru/images/vetfac/ images/ebooks/histology/histology/r4/t11html. Cited July 1, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Genina.

Additional information

Original Russian Text © E.A. Genina, A.N. Bashkatov, M.D. Kozintseva, V.V. Tuchin, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 1, pp. 27-35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genina, E.A., Bashkatov, A.N., Kozintseva, M.D. et al. OCT Study of Optical Clearing of Muscle Tissue in vitro with 40% Glucose Solution. Opt. Spectrosc. 120, 20–27 (2016). https://doi.org/10.1134/S0030400X16010082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16010082

Keywords

Navigation