Skip to main content
Log in

Raman scattering in lead selenide films at a low excitation level

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Raman scattering spectra of epitaxial lead selenide films were measured at low (0.06 mW/μm2) excitation power densities to ensure the absence of photo- and thermal modifications of the film material. It is shown that observed transitions correspond to overtones or combinational tones of PbSe phonon modes implying a high quality of crystalline structure of the material for which the first order Raman effect is prohibited. An increase in incident excitation density leads to the appearance of transitions related to lead oxides, which masks characteristic spectral features of lead selenide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Zimin, E. S. Gorlachev, A. V. Baranov, S. A. Cherevkov, E. Abramof, and P. H. O. Rappl, Opt. Spectrosc. 117, 748 (2014).

    Article  ADS  Google Scholar 

  2. A. V. Baranov, K. V. Bogdanov, E. V. Ushakova, S. A. Cherevkov, A. V. Fedorov, and S. Tscharntke, Opt. Spectrosc. 109, 268 (2010).

    Article  ADS  Google Scholar 

  3. S. A. Cherevkov and A. V. Baranov, Nauch.-Tekh. Vestn. SPbGU ITMO 51, 286 (2008).

    Google Scholar 

  4. H. Zogg, A. Fach, J. John, J. Masek, P. Mueller, C. Paglino, and S. Blunier, Opt. Eng. 34, 1964 (1995).

    Article  ADS  Google Scholar 

  5. M. Tacke, Philos. Trans. A 359, 547 (2001).

    Article  ADS  Google Scholar 

  6. O. Kilian, G. Allan, and L. Wirtz, Phys. Rev. B 80, 245208 (2009).

    Article  ADS  Google Scholar 

  7. T. Schwarzl, G. Springholz, M. Böberl, E. Kaufmann, J. Roither, W. Heiss, J. Furst, and H. Pascher, Appl. Phys. Lett. 86, 031102 (2005).

    Article  ADS  Google Scholar 

  8. H. Zogg, K. Kellermann, K. Alchalabi, and D. Zimin, Infrared Phys. Technol. 46, 155 (2004).

    Article  ADS  Google Scholar 

  9. S. P. Zimin, E. S. Gorlachev, N. V. Gladysheva, V. V. Naumov, V. F. Gremenok, and H. G. Seidi, Opt. Spectrosc. 115, 679 (2013).

    Article  ADS  Google Scholar 

  10. V. Arivazhagan, M. Manonmani Parvathi, and S. Rajesh, J. Alloys Compd. 577, 431 (2013).

    Article  Google Scholar 

  11. C. Gayner and K. K. Kar, J. Appl. Phys. 117, 103906 (2015).

    Article  ADS  Google Scholar 

  12. J. Habinshuti, O. Kilian, O. Cristini-Robbe, A. Sashchiuk, A. Addad, S. Turrell, E. Lifshitz, B. Grandidier, and L. Wirtz, Phys. Rev. B 88, 115313 (2013).

    Article  ADS  Google Scholar 

  13. M. Manonmani Parvathi, V. Arivazhagan, and S. Rajesh, Appl. Phys. A 116, 1773 (2014).

    Article  ADS  Google Scholar 

  14. A.-L. Yang, H.-Z. Wu, Z.-F. Li, D.-J. Qiu, Y. Chang, J.-F. Li, P. J. McCann, and X. M. Fang, Chin. Phys. Lett. 17, 606 (2000).

    Article  ADS  Google Scholar 

  15. S. P. Zimin, E. A. Bogoyavlenskaya, E. S. Gorlachev, V. V. Naumov, D. S. Zimin, H. Zogg, and M. Arnold, Semicond. Sci. Technol. 22, 1317 (2007).

    Article  ADS  Google Scholar 

  16. http://www.renishaw.com/en/streamline-generatechemical-images-rapidly-9449

  17. N. Suzuki, K. Sawai, and S. Adachi, J. Appl. Phys. 77, 1249 (1995).

    Article  ADS  Google Scholar 

  18. A. H. Romero, M. Cardona, R. K. Kremer, R. Lauck, G. Siegle, J. Serrano, and X. C. Gonze, Phys. Rev. B 78, 224302 (2008).

    Article  ADS  Google Scholar 

  19. Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, Phys. Rev. B 85, 184303 (2012).

    Article  ADS  Google Scholar 

  20. K. S. Upadhyaya, M. Yadav, and G. K. Upadhyaya, Phys. Status Solidi B 229, 1129 (2002).

    Article  ADS  Google Scholar 

  21. Y. Zhang, X. Ke, C. Chen, J. Yang, and P. R. C. Kent, Phys. Rev. B 80, 024304 (2009).

    Article  ADS  Google Scholar 

  22. L. Burgio, R. J. H. Clark, and S. Firth, Analyst 126, 222 (2001).

    Article  ADS  Google Scholar 

  23. M. J. Bierman, Y. K. A. Lau, and S. Jin, Nano Lett. 7, 2907 (2007).

    Article  ADS  Google Scholar 

  24. O. A. Balitskii, V. P. Savchyn, and V. O. Yukhymchuk, Semicond. Sci. Technol. 17, L1 (2002).

    Article  ADS  Google Scholar 

  25. A. Grzechnik, L. Farina, R. Lauck, K. Syassen, I. Loa, and P. Bouvier, J. Solid State Chem. 168, 184 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Kuzivanov.

Additional information

Original Russian Text © M.O. Kuzivanov, S.P. Zimin, A.V. Fedorov, A.V. Baranov, 2015, published in Optika i Spektroskopiya, 2015, Vol. 119, No. 6, pp. 925–930.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzivanov, M.O., Zimin, S.P., Fedorov, A.V. et al. Raman scattering in lead selenide films at a low excitation level. Opt. Spectrosc. 119, 938–942 (2015). https://doi.org/10.1134/S0030400X15120140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15120140

Keywords

Navigation