Skip to main content
Log in

Quantum fluctuations of one- and two-dimensional spatial dissipative solitons in a nonlinear interferometer: I. One-dimensional dark solitons

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Quantum fluctuations of one-dimensional dark dissipative solitons sustained by an external radiation in an interferometer with a Kerr nonlinearity are analyzed theoretically. The stability region of classical solitons in this interferometer is studied. The boundaries of this region are determined, and types of excited solitons are classified. Quantum fluctuations of solitons are analyzed in an approximation linear in fluctuations. This problem was solved by linearizing the quantum Langevin equation in a neighborhood of a classical solution for the main type of a soliton from the obtained stability region. The main attention has been paid to studying quantum fluctuations of collective variables of dissipative solitons, namely, the coordinate of the center and momentum of the soliton. Based on the expansion of solutions of the linearized equation in eigenfunctions of the discrete spectrum of this equation, a solution describing quantum fluctuations of these variables is constructed. Using this expansion scheme made it possible to give a rigorous definition of the dissipative soliton position fluctuation operator. The study performed based on this scheme has made it also possible to construct a solution for a one-dimensional dark relaxing dissipative soliton. This soliton generalizes the stationary soliton with allowance for the shift of its center and deformation of its profile followed by the recovery of its initial shape. Average squares of quantum fluctuations of collective variables are calculated. A domain of parameters in which there exist quantum states of solitons with an initially high degree of squeezing with respect to the momentum is found. It is shown that such states are in correspondence with significantly higher velocities of soliton center drift. An experiment that could detect the relative squeezing with respect to the momentum due to the soliton center drift is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, Amsterdam, 2003; Fizmatlit, Moscow, 2005).

    Google Scholar 

  2. N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  3. Dissipative Solitons in Lecture Notes in Physics, Ed. by N. Akhmediev and A. Ankiewicz (Springer, Berlin, 2005), Vol. 661.

  4. Dissipative Solitons: From Optics to Biology and Medicine in Lecture Notes in Physics, Ed. by N. Akhmediev and A. Ankiewicz (Springer, Berlin, 2008), Vol. 751.

  5. N. N. Rosanov, Dissipative Optical Solitons: From Micro- to Nano- and Atto- (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  6. Y. Lai and H. A. Haus, Phys. Rev. A 40(2), 844 (1989).

    Article  ADS  Google Scholar 

  7. Y. Lai and H. A. Haus, Phys. Rev. A 40(2), 854 (1989).

    Article  ADS  Google Scholar 

  8. M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66(2), 153 (1991).

    Article  ADS  Google Scholar 

  9. S. J. Carter, P. D. Drummond, M. D. Reid, and R. M. Shelby, Phys. Rev. Lett. 58(18), 1841 (1987).

    Article  ADS  Google Scholar 

  10. P. D. Drummond and S. J. Carter, J. Opt. Soc. Am. B 4(10), 1565 (1987).

    Article  ADS  Google Scholar 

  11. P. D. Drummond, S. J. Carter, and R. M. Shelby, Opt. Lett. 14(7), 373 (1990).

    Article  ADS  Google Scholar 

  12. H. A. Haus and Y. Lai, J. Opt. Soc. Am. B 7(3), 386 (1990).

    Article  ADS  Google Scholar 

  13. P. D. Drummond et al., Nature 365, 307 (1993).

    Article  ADS  Google Scholar 

  14. S. R. Friberg et al., Phys. Rev. Lett. 77(18), 3775 (1996).

    Article  ADS  Google Scholar 

  15. S. Spalter et al., Europhys. Lett. 38(5), 335 (1997).

    Article  ADS  Google Scholar 

  16. S. Spalter et al., Opt. Express 2, 77 (1998).

    Article  ADS  Google Scholar 

  17. M. J. Werner, Phys. Rev. A 54(4), R2567 (1996).

    Article  ADS  Google Scholar 

  18. A. Mecozzi, Opt. Lett. 22(16), 1232 (1997).

    Article  ADS  Google Scholar 

  19. D. Levandovsky, M. Vasilyev, and P. Kumar, Opt. Lett. 24(1), 43 (1999).

    Article  ADS  Google Scholar 

  20. E. Lantz et al., J. Opt. B 6, 295 (2004).

    Article  ADS  Google Scholar 

  21. E. M. Nagasako, R. W. Boyd, and G. S. Agarwal, Opt. Express 3(5), 171 (1998).

    Article  ADS  Google Scholar 

  22. A. Mecozzi and P. Kumar, Quantum Semiclass. Opt. 10, L21 (1998).

    Article  ADS  Google Scholar 

  23. J.-L. Oppo and J. Jeffers, in Quantum Image, Ed. by M. I. Kolobov (Fizmatlit, Moscow, 2009) [in Russian].

  24. W. J. Firth and C. O. Weiss, Opt. and Photon. News, No. 13, 54 (2002).

    Google Scholar 

  25. I. Rabbiosi, A. J. Scroggie, and J.-L. Oppo, Phys. Rev. Lett. 89, 254102 (2002).

    Article  ADS  Google Scholar 

  26. I. Rabbiosi, A. J. Scroggie, and J.-L. Oppo, Eur. Phys. J. D 22, 453 (2003).

    Article  ADS  Google Scholar 

  27. R. Zambrini et al., Eur. Phys. J. D 22, 460 (2003).

    Article  ADS  Google Scholar 

  28. L. A. Nesterov, Al. S. Kiselev, An. S. Kiselev, and N. N. Rosanov, Opt. Spectrosc. 106(4), 570 (2009).

    Article  ADS  Google Scholar 

  29. L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58(2), 2209 (1987).

    Article  ADS  Google Scholar 

  30. N. N. Rosanov, Optical Bistability and Hysteresis in Distributed Nonlinear Systems (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  31. N. N. Rosanov and G. V. Khodova, Opt. Spektrosk. 65, 1375 (1988).

    Google Scholar 

  32. N. N. Rosanov, A. V. Fedorov, and G. V. Khodova, Phys. Stat. Sol. (b) 150(2), 545 (1988).

    Article  ADS  Google Scholar 

  33. N. N. Rosanov and G. V. Khodova, J. Opt. Soc. Am. B 8(7), 1471 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Rosanov.

Additional information

Original Russian Text © L.A. Nesterov, N.A. Veretenov, N.N. Rosanov, 2015, published in Optika i Spektroskopiya, 2015, Vol. 118, No. 5, pp. 815–827.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, L.A., Veretenov, N.A. & Rosanov, N.N. Quantum fluctuations of one- and two-dimensional spatial dissipative solitons in a nonlinear interferometer: I. One-dimensional dark solitons. Opt. Spectrosc. 118, 781–793 (2015). https://doi.org/10.1134/S0030400X15050148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15050148

Keywords

Navigation