Skip to main content
Log in

Stimulated radiative transitions of an electron in an image potential

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Wave functions describing the state of an electron in the image potential field near the surface of a metal are obtained. General relationships for the stimulated absorption probabilities are derived in the first order of perturbation theory in the interaction of the electron with an electromagnetic wave in the dipole approximation. The probabilities of bound-bound and bound-free transitions are expressed in terms of elementary functions. Calculated matrix elements for a number of transitions are presented and the asymptotic behavior of probabilities is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Zon, N. L. Manakov, and L. P. Rapoport, Multiphoton Processes in Atoms (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  2. V. A. Davydkin, V. D. Ovsyannikov, and B. A. Zon, Laser Phys. 5(3), 449 (1993).

    Google Scholar 

  3. M. A. Preobrazhenskii, Opt. Spektrosk. 77(2), 559 (1994).

    Google Scholar 

  4. M. A. Preobrazhenskii and E. V. Zhnova, Opt. Spektrosk. 79(2), 200 (1995).

    Google Scholar 

  5. A. Khemli and M. Geogenana, Scientific Basics of Nanotechnologies and New Instruments, Ed. by R. Kelsall (Intellekt, Dolgoprudnyi, 2011) [in Russian].

  6. H. N. Núñez-Yépes, C. A. Vargas, and A. L. Salas-Brito,, Eur. J. Phys. 8(1), 189 (1987).

    Google Scholar 

  7. P. Kurasov, J. Phys. A: Math. Gen. 29(4), 1767 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. W. Fisher, H. Leschke, and P. Müller, J. Phys. A: Math. Gen. 30, 5579 (1997).

    Article  ADS  Google Scholar 

  9. G. Abramovici and Y. Avishai, J. Phys. A.: Math. Theor. 42, 285302 (2009).

    Article  MathSciNet  Google Scholar 

  10. B. Jaramillo, R. P. Martínez-y-Romero, H. N. Núñez-Yépes, and A. L. Salas-Brito,, Phys. Lett. A 374, 150 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. H. N. Núñez-Yépes, A. L. Salas-Brito, and D. A. Solis,, Phys. Rev. A 83, 064101 (2011).

    Article  ADS  Google Scholar 

  12. V. L. Bakhrakh and S. I. Vetchinkin, Teor. Mat. Fiz. 6(1), 392 (1971).

    MathSciNet  Google Scholar 

  13. S. M. Susskind and R. V. Jensen, Phys. Rev. A 38(2), 711 (1998).

    Article  ADS  Google Scholar 

  14. M. H. Nayfeh, D. C. Humm, and M. Peercy, Phys. Rev. A 40, 3736 (1989).

    Article  ADS  Google Scholar 

  15. Ue-Li Pen and T. F. Jiang, Phys. Rev. A: Math. Gen. 46, 4297 (1992).

    Article  ADS  Google Scholar 

  16. Jun Chen and I. B. Bernstein, Phys. Rev. A 47, 4099 (1993).

    Article  ADS  Google Scholar 

  17. P. M. Echenique, J. Phys. C: Sol. Stat. Phys. 18, L1133 (1985).

    Article  ADS  Google Scholar 

  18. P. M. Echenique and M. E. Uranga, Surf. Sci. 247(1), 125 (1991).

    Article  ADS  Google Scholar 

  19. S. V. Eremeev, S. S. Tsirkin, and E. V. Chulkov, Phys. Solid State 52, 1768 (2010).

    Article  ADS  Google Scholar 

  20. P. M. Echenique and J. B. Pendry, J. Phys. C: Solid State Phys. 11, 2065 (1978).

    Article  ADS  Google Scholar 

  21. T. Fauster and W. Steinmann, in Photonic Probes of Surfaces, Ed. by P. Halevi (Elsevier, Amsterdam, 1995), p. 347.

  22. P. M. Echenique, R. Berndt, E. V. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, Surf. Sci. Rep. 52(1), 219 (2004).

    Article  ADS  Google Scholar 

  23. P. M. Echenique and M. E. Uranga, Surf. Sci. 247(1), 125 (1991).

    Article  ADS  Google Scholar 

  24. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 437(1), 330 (1999).

    Article  ADS  Google Scholar 

  25. U. Höfer, I. L. Shumay, C. H. Reu W. Wallauer, and T. Fauster, Science 277, 1480 (1977).

    Article  Google Scholar 

  26. W. S. Fann, R. Storz, and J. Bokor, Phys. Rev. B 44, 10980 (1991).

    Article  ADS  Google Scholar 

  27. C. H. Reu M. Weinelt, and T. Fauster, Phys. Rev. Lett. 42(1), 153 (1999).

    Google Scholar 

  28. T. Fauster, C. H. Reu Chem. Phys. 251(1), 111 (2000).

    Google Scholar 

  29. M. Roth, M. Pickel, M. Weinelt, and T. Fauster, Appl. Phys. A 78(1), 149 (2004).

    Article  ADS  Google Scholar 

  30. J. Güdde and U. Höfer, Progr. Surf. Sci. 80(1), 49 (2005).

    Article  ADS  Google Scholar 

  31. U. Höfer, M. Hirschmann, and T. Fauster, Appl. Phys. A 88(1), 547 (2007).

    ADS  Google Scholar 

  32. Th. Fauster, M. Weinelt, and U. Höfer, Prog. Surf. Sci. 82(1), 224 (2007).

    Article  ADS  Google Scholar 

  33. S. V. Eremeev and E. V. Chulkov, Phys. Solid State 51(4), 854 (2009).

    Article  ADS  Google Scholar 

  34. A. Garci’a-Lekue, J. M. Pitarke, E. V. Chulkov, A. Liebsch, and P. M. Echenique, Phys. Rev. Lett. 26, 096401 (2002).

    Article  ADS  Google Scholar 

  35. E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, Chem. Rev. 106, 4160 (2006).

    Article  Google Scholar 

  36. V. M. Silkin, R. Ohmann, I. Brihuega, L. Vitali, Ch. H. Michaelis, P. Mallet, J. Y. Veuillen, M. A. Schneider, E. V. Chulkov, P. M. Echenique, and K. Kern, New J. Phys. 12, 023028 (2010).

    Article  Google Scholar 

  37. A. S. Davydov, Quantum Mechanics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  38. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1964).

    Google Scholar 

  39. P. A. Golovinskii and M. A. Preobrazhenskii, Nauchnyi Vestnik VGUSU. Ser. Fiz. Khim. Probl. Vys. Tekhnol. Stroit. Mat. 1(6), 3 (2012).

    Google Scholar 

  40. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, New York, 1994).

    Google Scholar 

  41. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 2003).

    Google Scholar 

  42. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Dover, New York, 2008).

    Google Scholar 

  43. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, Cambridge, 1963; Editorial URSS, Moscow, 2010).

    MATH  Google Scholar 

  44. H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. 1: Hypergeometric Function, Legendre Functions (McGraw-Hill, New York, 1953).

    Google Scholar 

  45. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Golovinskii.

Additional information

Original Russian Text © P.A. Golovinskii, M.A. Preobrazhenskii, 2015, published in Optika i Spektroskopiya, 2015, Vol. 118, No. 2, pp. 203–210.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovinskii, P.A., Preobrazhenskii, M.A. Stimulated radiative transitions of an electron in an image potential. Opt. Spectrosc. 118, 191–198 (2015). https://doi.org/10.1134/S0030400X1502006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1502006X

Keywords

Navigation