Skip to main content
Log in

Stabilization of the shape of a solitary electromagnetic wave in a graphene superlattice by a high-frequency laser field

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The influence of high-frequency electromagnetic radiation on propagation of solitary electromagnetic waves in graphene superlattice is analyzed taking into consideration energy dissipation. The expression for dissipative soliton potential is derived. It is demonstrated that the shape of the dissipative soliton depends on the high-frequency radiation amplitude. Intervals of high-frequency field amplitudes for which two types of dissipative solitons form in graphene superlattice are found. It is shown that areas of these solitons are regulated by variation of the high-frequency radiation amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73, 125411 (2006).

    Article  ADS  Google Scholar 

  2. M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 97, 266405 (2006).

    Article  ADS  Google Scholar 

  3. L. A. Fal’kovskii, Usp. Fiz. Nauk 178(9), 923 (2008).

    Article  Google Scholar 

  4. S. A. Mikhailov, Physica E 40, 2626 (2008).

    Article  ADS  Google Scholar 

  5. D. S. L. Abergel and T. Chakraborty, Appl. Phys. Lett. 95, 062107 (2009).

    Article  ADS  Google Scholar 

  6. D. Bolmatov and C.-Y. Mou, Physica B 405, 2896 (2010).

    Article  ADS  Google Scholar 

  7. D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).

    Article  ADS  Google Scholar 

  8. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, Appl. Phys. Lett. 97, 203106 (2010).

    Article  ADS  Google Scholar 

  9. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, J. Phys.: Condens. Matter 19, 026222 (2007).

    ADS  Google Scholar 

  10. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  11. S. A. Mikhailov and K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008).

    ADS  Google Scholar 

  12. X.-L. Zhang, X. Zhao, Z.-B. Liu, S. Shi, W.-Y. Zhou, J.-G. Tian, Y.-F. Xu, and Y.-S. Chen, J. Opt. 13, 075202 (2011).

    Article  ADS  Google Scholar 

  13. N. Agrawal (Garg), S. Ghosh, and M. Sharma, Int. J. Mod. Phys. B 27, 1341003 (2013).

    Article  ADS  Google Scholar 

  14. Z.-B. Liu, L. Li, Y.-F. Xu, J.-J. Liang, X. Zhao, S.-Q. Chen, Y.-S. Chen, and J.-G. Tian, J. Opt. 13, 085601 (2011).

    Article  ADS  Google Scholar 

  15. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. L. Koppens, Nature Nanotechnology 7, 363 (2012).

    Article  ADS  Google Scholar 

  16. S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, Phys. Rev. Lett. 108, 047401 (2012).

    Article  ADS  Google Scholar 

  17. P. V. Ratnikov, Pis’ma Zh. Eksp. Teor. Fiz. 90(6), 515 (2009).

    Google Scholar 

  18. D. Bolmatov and C.-Y. Mou, Zh. Eksp. Teor. Fiz. 112, 102 (2011).

    Google Scholar 

  19. M. Barbier, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 81, 075438 (2010).

    Article  ADS  Google Scholar 

  20. D. V. Zavialov, V. I. Konchenkov, and S. V. Kruchkov, Semiconductors 46(1), 109 (2012).

    Article  ADS  Google Scholar 

  21. S. V. Kryuchkov and E. I. Kukhar’, Physica E 46, 25 (2012).

    Article  ADS  Google Scholar 

  22. M. Killi, S. Wu, and A. Paramekanti, Int. J. Mod. Phys. B 26, 1242007 (2012).

    Article  ADS  Google Scholar 

  23. F. Sattari and E. Faizabadi, Int. J. Mod. Phys. B 27, 1350024 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  24. Yu. A. Romanov and Yu. Yu. Romanova, Semiconductors, 39(1), 147 (2005).

    Article  ADS  Google Scholar 

  25. T. Hyart, N. V. Alekseeva, J. Mattas, and K. N. Alekseev, Phys. Rev. Lett. 102, 140405 (2009).

    Article  ADS  Google Scholar 

  26. F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989).

    Google Scholar 

  27. F. G. Bass, S. V. Kryuchkov, and A. I. Shapovalov, Fiz. Tekh. Poluprovodn. 29(1), 19 (1995).

    Google Scholar 

  28. S. Y. Mensah, F. K. A. Allotey, and N. G. Mensah, Physica Scr. 62, 212 (2000).

    Article  ADS  Google Scholar 

  29. K. Lonngren and A. Scott, Solitons in Action (Academic Press, New York, 1978).

    MATH  Google Scholar 

  30. S. V. Kryuchkov and E. I. Kukhar’, Physica B 408, 188 (2013).

    Article  ADS  Google Scholar 

  31. S. V. Kryuchkov, E. I. Kukhar’, and D. V. Zav’yalov, Laser Phys. 23, 065902 (2013).

    Article  ADS  Google Scholar 

  32. N. N. Rozanov, Usp. Fiz. Nauk 170(4), 462 (2000).

    Article  Google Scholar 

  33. G. D. Montesinos, V. M. Perez-Garcia, and P. Torres, Physica D (Amsterdam) 191, 193 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. S. V. Kryuchkov and A. I. Shapovalov, Opt. Spectrosc. 84(2), 244 (1998).

    ADS  Google Scholar 

  35. S. V. Kryuchkov and E. G. Fedorov, Semiconductors 36(3), 307 (2002).

    Article  ADS  Google Scholar 

  36. T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).

    Article  ADS  Google Scholar 

  37. D. S. L. Abergel and T. Chakraborty, Nanotecnology 22, 015203 (2011).

    Article  ADS  Google Scholar 

  38. H. L. Calvo, H. M. Pastawski, S. Roche, and L. E. F. Foa Torres, Appl. Phys. Lett. 98, 232103 (2011).

    Article  ADS  Google Scholar 

  39. S. V. Kryuchkov and E. I. Kukhar’, Superlattices and Microstructures 70, 70 (2014).

    Article  ADS  Google Scholar 

  40. C. A. Condat, R. A. Guyer, and M. D. Miller, Phys. Rev. B 27, 474 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  41. D. K. Campbell, M. Peyrard, and P. Solano, Physica D (Amsterdam) 19, 165 (1986).

    Article  ADS  Google Scholar 

  42. G. Mussardo, V. Riva, and G. Sotkov, Nucl. Phys. B 687, 189 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. E. M. Belenov and A. V. Nazarkin, Pis’ma Zh. Eksp. Teor. Fiz. 51(5), 252 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kukhar’.

Additional information

Original Russian Text © S.V. Kryuchkov, E.I. Kukhar’, 2015, published in Optika i Spektroskopiya, 2015, Vol. 118, No. 1, pp. 163–168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryuchkov, S.V., Kukhar’, E.I. Stabilization of the shape of a solitary electromagnetic wave in a graphene superlattice by a high-frequency laser field. Opt. Spectrosc. 118, 157–162 (2015). https://doi.org/10.1134/S0030400X15010142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15010142

Keywords

Navigation