Skip to main content
Log in

An algorithm for identification of substances using a finite set of secondary-emission spectra

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A problem of identification of chemical composition in the absence of sampling procedures is considered. A method that allows identification using spectra of a desired substance is proposed. The measure of the difference between spectral sets is determined. The method is employed in the experiments using a visible and near-UV Fourier spectrometer. The secondary emission of samples is excited by UV sources with maximum intensities at wavelengths of 280 and 310 nm. Anthracene, POPOP, PPO, stilbene, and tryptophan are used in experiments. The ROC curves are constructed and compared to specify the parameters that are used in the algorithm for searching for substances in the database of reference spectra. The results will make it possible to improve the reliability and applicability of express analyzers of chemical substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Sadlej-Sosnowska, A. Ocios, and L. Fuks, J. Molec. Structure 792, 110 (2006).

    Article  ADS  Google Scholar 

  2. S. E. Stein and D. R. Scott, J. Am. Soc. Mass Spectrom. 5, 859 (1994).

    Article  Google Scholar 

  3. I. V. Kochikov, A. N. Morozov, S. I. Svetlichnyi, and I. L. Fufurin, Opt. Spectrosc. 106(5), 666 (2009).

    Article  ADS  Google Scholar 

  4. F. Platte and H. M. Heise, J. Molec. Structure (in press).

  5. C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 623, 1050 (2010).

    Article  ADS  Google Scholar 

  6. F. Kruse, A. Lefkoff, J. Boardman, K. Heidebrecht, A. Shapiro, P. Barloon, and A. Goetz, Remote Sensing of Environment 44, 145 (1993).

    Article  Google Scholar 

  7. J. Hartstra, J. Franke, and R. de Zeeuw, J. Chromatography B: Biomedical Sciences and Applications 739, 125 (2000).

    Article  Google Scholar 

  8. P. Paclik, R. Leitner, and R. P. W. Duin, J. Real-Time Image Processing 1, 101 (2006).

    Article  Google Scholar 

  9. B. L. Milman, M. A. Kovrizhnych, and L. A. Konopelko, Accreditation and Quality Assurance 4, 185 (1999).

    Article  Google Scholar 

  10. L. Bodis, A. Ross, and E. Pretsch, Chemometrics and Intelligent Laboratory Systems 85, 1 (2007).

    Article  Google Scholar 

  11. D. L. Huber, Applications of Diode-Array Detection in HPLC Share Hewlett-Packard’s Diode-Array Experience (Hewlett Packard, 1989).

    Google Scholar 

  12. B. Ahrens, D. Blankenhorn, and B. Spangenberg, J. Chromatogr. 772, 11 (2002).

    Google Scholar 

  13. P. Paclik and R. P. Duin, Real-Time Imaging 9, 237 (2003).

    Article  Google Scholar 

  14. M. Herzler, S. Herre, and F. Pragst, J. Analytical Toxicology 27, 233 (2003).

    Article  Google Scholar 

  15. A. Gutirrez-Rodrguez, M. Medina-Prez, J. Martnez-Trinidad, J. Carrasco-Ochoa, and M. Garca-Borroto, Advances in Pattern Recognition, Ed. by J. Martnez-Trinidad, J. Carrasco-Ochoa, and J. Kittler (Springer, Berlin, Heidelberg, 2010), Vol. 6256, pp. 220–229.

  16. F. van der Meero and W. Bakker, Remote Sensing of Environment 61, 371 (1997).

    Article  Google Scholar 

  17. I. V. Kochikov, G. M. Kuramshina, and S. I. Chernik, Computational Mathematics and Modeling 3, 276 (1992).

    Article  Google Scholar 

  18. K. V. Glagolev, I. S. Golyak, I. S. Golyak, A. A. Esakov, V. N. Kornienko, I. V. Kochikov, A. N. Morozov, S. I. Svetlichnyi, and S. E. Tabalin, Opt. Spectrosc. 110(3), 449 (2011).

    Article  ADS  Google Scholar 

  19. I. S. Golyak, A. A. Esakov, N. S. Vasil’ev, and A. N. Morozov, Opt. Spectrosc. 115(6), 884 (2013).

    Article  ADS  Google Scholar 

  20. S. K. Dvoruk, V. N. Kornienko, I. V. Kochikov, M. V. Lel’kov, A. N. Morozov, V. A. Pozdnyakov, S. I. Svetlichnyi, and S. E. Tabalin, Opt. Spectrosc. 93(6), 970 (2002).

    Article  ADS  Google Scholar 

  21. N. Tan, W. Fisher, K. Rosenblatt, and H. Garner, BMC Bioinformatics 10, 144 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Vasil’ev.

Additional information

Original Russian Text © N.S. Vasil’ev, Il.S. Golyak, A.N. Morozov, 2015, published in Optika i Spektroskopiya, 2015, Vol. 118, No. 1, pp. 157–162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, N.S., Golyak, I.S. & Morozov, A.N. An algorithm for identification of substances using a finite set of secondary-emission spectra. Opt. Spectrosc. 118, 151–156 (2015). https://doi.org/10.1134/S0030400X1412025X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1412025X

Keywords

Navigation