Skip to main content
Log in

Enhancement of single-walled nanotubes luminescence intensity upon dithiothreitol doping

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

In the present work the influence of reducing agent dithiothreitol doping on photoluminescence spectra of nanotubes with adsorbed biopolymers (single-stranded DNA and polyC) in aqueous suspensions and films was studied. It is revealed that greater intensity enhancement at 10−3 mol/L dithiothreitol concentration is observed for (7,5) and (6,5) nanotubes in suspension with single-stranded DNA (by more than 150% of initial intensity) comparing to polyC suspension (less than 60%) while for (6,4) and (9,1) nanotubes enhancement is less than 50% for both suspensions. Photoluminescence intensity increasing for nanotube film with DNA is less than 50% without noticeable dependence on nanotube chirality. It is assumed, that different influence of biopolymers on nanotube luminescence intensity enhancement is due to their different coverage of nanotube surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Boghossian, J. Zhang, P. W. Barone, N. F. Reuel, J.-H. Kim, D. A. Heller, J.-H. Ahn, A. J. Hilmer, A. Rwei, J. R. Arkalgud, C. T. Zhang, and M. S. Strano, ChemSusChem 4, 848 (2011).

    Article  Google Scholar 

  2. J. Lefebvre, S. Maruyama, and P. Finnie, Carbon Nanotubes, Ed. by A. Jorio, G. Dresselhaus, and M. S. Dresselhaus (Springer, Heidelberg, 2008), Vol. 111, p. 287.

  3. P. Avouris, M. Freitag, and V. Perebeinos, Nat. Photonics 2, 341 (2008).

    Article  ADS  Google Scholar 

  4. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kitrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002).

    Article  ADS  Google Scholar 

  5. Y. Ohno, S. Maruyama, and T. Mizutani, in Carbon Nanotubes, Ed. by J. M. Marulanda (InTech, Vukovar, 2010), p. 109.

  6. H. Guosong, J. Z. Wu, J. T. Robinson, H. Wang, B. Zhang, and H. Dai, Nat. Commun. 3, 700 (2012).

    Article  Google Scholar 

  7. V. A. Karachevtsev, in Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials, Ed. by I. A. Levitsky, W. B. Euler, and V. A. Karachevtsev (Springer-Verlag, London, 2012), p. 89.

  8. L. Cognet, D. A. Tsyboulski, J.-D. R. Rocha, C. D. Doyle, J. M. Tour, and R. B. Weisman, Science 316, 1465 (2007).

    Article  ADS  Google Scholar 

  9. D. M. Harrah and A. K. Swan, ACS Nano 5, 647 (2011).

    Article  Google Scholar 

  10. H. B. Zhao and S. Mazumdar, Phys. Rev. Lett. 93, 157402 (2004).

    Article  ADS  Google Scholar 

  11. V. Perebeinos, J. Tersoff, and P. Avouris, Nano Lett. 5 (12), 2495 (2005).

  12. C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. 95, 247402 (2005).

    Article  ADS  Google Scholar 

  13. T. Ando, J. Phys. Soc. Jpn. 75, 024707 (2006).

    Article  ADS  Google Scholar 

  14. J. Crochet, M. Clemens, and T. Hertel, J. Am. Chem. Soc. 129, 8058 (2007).

    Article  Google Scholar 

  15. S.-Y. Ju, W. P. Kopcha, and F. Papadimitrokopoulos, Science 323, 1319 (2009).

    Article  ADS  Google Scholar 

  16. Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon, G. C. Schatz, and Yu. Wang, Nat. Chem. 5, 840 (2013).

    Article  Google Scholar 

  17. Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, Nat. Photonics 7, 715 (2013).

    Article  ADS  Google Scholar 

  18. A. J. Lee, X. Wang, L. J. Carlson, J. A. Smyder, B. Loesch, X. Tu, M. Zheng, and T. D. Krauss, Nano Lett. 11, 1636 (2011).

    Article  ADS  Google Scholar 

  19. M. V. Karachevtsev and V. A. Karachevtsev, J. Phys. Chem. B 115, 9271 (2011).

    Article  Google Scholar 

  20. W. E. Alvarez, F. Pompeo, J. E. Herrera, L. Balzano, and D. E. Resasco, Chem. Mater. 14, 1853 (2002).

    Article  Google Scholar 

  21. G. O. Gladchenko, M. V. Karachevtsev, V. S. Leontiev, V. A. Valeev, A. Yu. Glamazda, A. M. Plokhotnichenko, and S. G. Stepanian, Mol. Phys. 104, 3193 (2006).

    Article  ADS  Google Scholar 

  22. V. A. Karachevtsev, A. M. Plokhotnichenko, M. V. Karachevtsev, and V. S. Leontiev, Carbon 48, 3682 (2010).

    Article  Google Scholar 

  23. C. Fantini, V. Jorio, A. P. Santos, V. S. T. Peressinotto, and M. A. Pimenta, Chem. Phys. Lett. 439, 138 (2007).

    Article  ADS  Google Scholar 

  24. T. J. McDonald, D. Svedruzic, Y.-H. Kim, J. L. Blackburn, S. B. Zhang, and P. W. King, Nano Lett. 7(11), 3528 (2007).

    Article  ADS  Google Scholar 

  25. S. K. Doorn, J. Nanosci. Nanotechnol. 5(7), 1023 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kurnosov.

Additional information

Original Russian Text © N.V. Kurnosov, A.S. Linnik, V.S. Leontiev, V.A. Karachevtsev, 2014, published in Optika i Spektroskopiya, 2014, Vol. 117, No. 3, pp. 443–449.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurnosov, N.V., Linnik, A.S., Leontiev, V.S. et al. Enhancement of single-walled nanotubes luminescence intensity upon dithiothreitol doping. Opt. Spectrosc. 117, 428–433 (2014). https://doi.org/10.1134/S0030400X14090148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14090148

Keywords

Navigation