Skip to main content
Log in

Estimate for the doppler shift of a non-Gaussian signal upon coherent detection of scattered optical radiation in a turbulent atmosphere

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A non-Gaussian model for estimating the radial velocity of turbulent flows in the atmosphere for coherent detection of scattered optical radiation is proposed. The model was obtained based on a theoretical approach that includes results of the statistical analysis of a pulse Doppler lidar signal in a turbulent medium, as well as on the perturbation-theory methods that have been developed in the theory of probability and mathematical statistics. It is shown that the estimate of the Doppler shift in the first-order perturbation theory is a sum of a regular component and two conditional fluctuation components—Gaussian and non-Gaussian ones. In the case of a homogeneous and isotropic turbulence, the estimate of the radial wind velocity is approximately equal to its true average value. The statistical uncertainty in measurements of the average radial wind velocity is determined by the behavior of conditional Gaussian and non-Gaussian components and significantly depends on the state of atmospheric turbulence. It is shown that basic equations of the non-Gaussian model in the limit case coincide with formulas of the local and nonlocal models, as well as with those of the Gaussian model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Sobolev, Optimal Estimates of Parameters of Optical Signals (Izd-vo Sibirskogo Otdeleniya RAN, Novosibirsk, 2011) [in Russian].

    Google Scholar 

  2. B. Crosignani, P. Di Porto, and M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975; Nauka, Moscow, 1980).

    Google Scholar 

  3. R. C. Srivastava and D. Atlas, J. Appl. Meteorol. 13(4), 472 (1974).

    Article  ADS  Google Scholar 

  4. R. F. Frehlich and M. J. Yadlowsky, J. Atmosph. Oceanic Technol. 11(10), 1217 (1994).

    Article  ADS  Google Scholar 

  5. T. Berger and H. L. Groginsky, in Abstracts of the International Conference on Information Theory (Tel Aviv, Israel, 1973).

    Google Scholar 

  6. D. S. Zrnic, IEEE Trans. Aerospace Electron. Systems AES-13(4), 344 (1977).

    Article  ADS  Google Scholar 

  7. D. S. Zrnic, IEEE Trans. Geoscience Electron. GE-17(7), 113 (1979).

    Article  Google Scholar 

  8. T. J. Kane, B. Zhou, and R. L. Byer, Appl. Opt. 23(15), 2477 (1984).

    Article  ADS  Google Scholar 

  9. R. T. Menzies, Appl. Opt. 25(15), 2546 (1986).

    Article  ADS  Google Scholar 

  10. A. P. Shelekhov and E. A. Shelekhova, Opt. Spectrosc. 114(2), 314 (2013).

    Article  ADS  Google Scholar 

  11. A. P. Shelekhov, E. A. Shelekhova, D. A. Belikov, and A. V. Starchenko, J. Atmosph. Oceanic Opt. 21(9), 709 (2008).

    Google Scholar 

  12. A. P. Shelekhov, J. Atmosph. Oceanic Opt. 10(10), 771 (1997).

    Google Scholar 

  13. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1971), Vol. 1.

    Google Scholar 

  14. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, MA, 1971), Vol. 2.

    Google Scholar 

  15. R. K. Newsom and R. M. Banta, J. Atmosph. Sci. 60, 16 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Shelekhova.

Additional information

Original Russian Text © E.A. Shelekhova, A.P. Shelekhov, 2014, published in Optika i Spektroskopiya, 2014, Vol. 117, No. 2, pp. 319–326.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelekhova, E.A., Shelekhov, A.P. Estimate for the doppler shift of a non-Gaussian signal upon coherent detection of scattered optical radiation in a turbulent atmosphere. Opt. Spectrosc. 117, 308–314 (2014). https://doi.org/10.1134/S0030400X14080220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14080220

Keywords

Navigation