Skip to main content
Log in

Luminescence and absorption of divalent ytterbium ion in yttrium-aluminum garnet ceramics

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Strong absorption bands at 280, 385, and 640 nm; a pulsed cathodoluminescence band with peaks at 325 and 520 nm and a dip at 385 nm; and a structured luminescence band in the range of 591–711 nm composed of four pair lines and having a dip near 640 nm have been observed in the spectra of yttrium-aluminum garnet ceramics activated with ytterbium (10 mol %) and subjected to vacuum sintering at a temperature of 1800°C. It is shown that these spectral features are absorption and luminescence bands of divalent ytterbium ions with the 4f 136s electron configuration of the ground state. These ions occupy the cubic site that is formed under conditions of oxygen deficit and disappears when the latter is removed during annealing ceramics in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tsuboi, H. Witzke, and D. S. VcClure, J. Lumin. 24/25, 305 (1981).

    Article  Google Scholar 

  2. A. A. Kaplyanskii, V. N. Medvedev, and P. L. Smolyanskii, Opt. Spektrosk. 41(6), 1043 (1976).

    Google Scholar 

  3. S. Lizzo, A. Meijerink, G. J. Dirksen, and G. Blasse, J. Lumin. 63, 223 (1995).

    Article  Google Scholar 

  4. S. Kück, M. Henke, and K. Rademaker, Phys. Laser. 11(1), 116 (2001).

    Google Scholar 

  5. S. Lizzo, A. Meijerink, G. J. Dirksen, and G. Blasse, J. Phys. Chem. Solids 56(7), 959 (1995).

    Article  ADS  Google Scholar 

  6. S. Lizzo, A. Meijerink, and G. Blasse, J. Lumin. 59, 185 (1994).

    Article  Google Scholar 

  7. G. Blasse, G. J. Dirksen, and A. Meijerink, Chem. Phys. Lett. 167(1–2), 41 (1990).

    Article  ADS  Google Scholar 

  8. H. S. Yoo, S. Vaidyanathan, S. W. Kim, and D. Y. Jeon, Opt. Mater. 31, 1555 (2009).

    Article  ADS  Google Scholar 

  9. S. Lizzo, E. P. K. Nagelvoort, R. Erens, A. Meijerink, and Gl. Blasse, J. Phys. Chem. Solids 58(6), 963 (1997).

    Article  ADS  Google Scholar 

  10. T. S. Piper, J. P. Brown, and D. S. McClure, J. Chem. Phys. 46(4), 1353 (1967).

    Article  ADS  Google Scholar 

  11. M. V. Eremin, Opt. Spektrosk. 29(1), 100 (1970).

    Google Scholar 

  12. L. Liu, R.-J. Xie, N. Hirosaki, T. Takeda, Ch.-N. Zhang, J. Li, and X. Sun, Sci. Technol. Adv. Mater. 12, 1 (2011).

    Article  Google Scholar 

  13. S. Kh. Batygov, Yu. K. Voron’ko, B. I. Denker, A. A. Maier, V. V. Osiko, V. S. Radyukhin, and M. I. Timoshechkin, Fiz. Tverd. Tela 14(4), 977 (1972).

    Google Scholar 

  14. T. I. Butaeva, A. G. Petrosyan, and A. K. Petrosyan, Neorg. Mater. 24(3), 430 (1988).

    Google Scholar 

  15. M. Henke, J. Perßon, and S. Kück, J. Lumin. 87–89, 1049 (2000).

    Article  Google Scholar 

  16. Ya. M. Zakharko, A. P. Luchechko, I. M. Syvorotka, I. I. Syvorotka, and S. B. Ubizskii, Funct. Mater. 12(2), 274 (2005).

    Google Scholar 

  17. Ki Vo Chiong, Yu. V. Zaitseva, N. A. Kulagin, L. P. Podus, and A. F. Sirenko, Fiz. Tverd. Tela 26(12), 3521 (1984).

    Google Scholar 

  18. D. Luo, J. Zhang, Ch. Xu, X. Qin, D. Tang, and J. Ma, Opt. Mater. 34(34), 936 (2012) (doi:10.1111/j.1551-2916.2011.04956.x).

    Article  ADS  Google Scholar 

  19. F. Tang, Y. Cao, J. Huang, H. Liu, W. Guo, and W. Wang, J. Am. Ceram. Soc. 95(1), 56 (2012) (doi:10.1111/j.1551-2916.2011.04956.x).

    Article  Google Scholar 

  20. N. V. Gerasimova, Extended Abstract of Candidate’s Dissertation (Moscow, 2002).

  21. V. V. Osipov, Yu. A. Kotov, M. G. Ivanov, O. M. Samatov, V. V. Lisenkov, V. V. Platonov, A. M. Murzakaev, A. I. Medvedev, and E. I. Azarkevich, Laser Phys. 16(1), 116 (2006).

    Article  ADS  Google Scholar 

  22. V. I. Solomonov, S. G. Michailov, A. I. Lipchak, V. V. Osipov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, and M. R. Ulmaskulov, Laser Phys. 16(1), 126 (2006).

    Article  ADS  Google Scholar 

  23. X. Xu, Z. Zhao, J. Xu, and P. Deng, J. Cryst. Growth 257, 272 (2003).

    Article  ADS  Google Scholar 

  24. M. Henke, K. Rademaker, and S. Kuck, http:hasy-web.desy.de/science/annual_reports/2002_reports/part1/.../8148.pdf.

  25. A. V. Sandulenko, Extended Abstract of Candidate’s Dissertation (St. Petersburg, NPK GOI im. S.I. Vavilova, 2008).

  26. R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, Phys. Rev. 159, 245 (1967).

    Article  ADS  Google Scholar 

  27. A. A. Kaminsky, Laser Crystals: Their Physics and Properties (Nauka, Moscow, 1975; Springer, Berlin, 1981).

    Google Scholar 

  28. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminsky, Zh. Eksp. Teor. Fiz. 69(3(9)), 860 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Solomonov.

Additional information

Original Russian Text © V.I. Solomonov, V.V. Osipov, A.V. Spirina, 2014, published in Optika i Spektroskopiya, 2014, Vol. 117, No. 3, pp. 457–462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomonov, V.I., Osipov, V.V. & Spirina, A.V. Luminescence and absorption of divalent ytterbium ion in yttrium-aluminum garnet ceramics. Opt. Spectrosc. 117, 441–446 (2014). https://doi.org/10.1134/S0030400X14030205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14030205

Keywords

Navigation