Skip to main content
Log in

Efficiency of Escherichia coli and Bacillus subtilis Expression Systems for Production of Binase Mutants

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Bacillus pumilus ribonuclease (binase) exhibits cytotoxic and oncolytic properties, while causing genotoxic effects at high concentrations. Mutants that have reduced catalytic activity and preserve the antitumor properties of the native enzyme could exert lower toxic side effects. Mutant binase forms with the Lys26Ala and His101Glu single substitutions were obtained by site-directed mutagenesis. A comparative analysis of Escherichia coli- and Bacillus subtilis-based expression systems demonstrated that the latter is better to use to produce the binase mutants. The binase mutants with reduced catalytic activity were isolated and purified to homogeneity by ion exchange chromatography; the maximum yield was 25 mg/L. Catalytic activities of the mutants toward natural RNA-substrates in comparison with those for native binase were estimated at 11% and 0.02%, respectively. Like native binase, the Lys26Ala mutant was found to be cytotoxic to the A549, BT-20, and HuTu 80 tumor cell lines, but did not substantially affect normal WI-38 cells. The His101Glu mutant did not show cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ulyanova V., Nadyrova A., Dudkina E., Kuznetsova A., Ahmetgalieva A., Faizullin D., Surchenko Y., Novopashina D., Zuev Y., Kuznetsov N., Ilinskaya O. 2022. Structural and functional differences between homologous bacterial ribonucleases. Int. J. Mol. Sci. 23, 1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ilinskaya O.N., Shah Mahmud R. 2014. Ribonucleases as antiviral agents. Mol. Biol. (Moscow). 48, 616–623.

    Article  Google Scholar 

  3. Makarov A.A., Ilinskaya O.N. 2003. Cytotoxic ribonucleases: Molecular weapons and their targets. FEBS Lett. 540, 15–20.

    Article  CAS  PubMed  Google Scholar 

  4. Ardelt B., Ardelt W., Pozarowski P., Kunicki J., Shogen K., Darzynkiewicz Z. 2007. Cytostatic and cytotoxic properties of Amphinase: A novel cytotoxic ribonuclease from Rana pipiens oocytes. Cell Cycle. 6, 3097‒3102.

    Article  CAS  PubMed  Google Scholar 

  5. Makarov A.A., Kolchinsky A., Ilinskaya O.N. 2008. Binase and other microbial RNases as potential anticancer agents. BioEssays. 30, 781–790.

    Article  CAS  PubMed  Google Scholar 

  6. Mitkevich V.A., Makarov A.A., Ilinskaya O.N. 2014. Cell targets of antitumor ribonucleases. Mol. Biol. (Moscow). 48, 181–188.

    Article  CAS  Google Scholar 

  7. Roiz L., Smirnoff P., Bar-Eli M., Schwartz B., Shoseyov O. 2006. ACTIBIND, an actin-binding fungal T-2‑RNase with antiangiogenic and anticarcinogenic characteristics. Cancer. 106, 2295–2308.

    Article  CAS  PubMed  Google Scholar 

  8. Leland P.A., Schultz L.W., Kim B.M., Raines R.T. 1998. Ribonuclease A variants with potent cytotoxic activity. Proc. Natl. Acad. Sci. U. S. A. 95, 10407–10412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ilinskaya O.N., Vamvakas S. 1997. Nephrotoxic effects of bacterial ribonucleases in the isolated perfused rat kidney. Toxicology. 120, 55–63.

    Article  CAS  PubMed  Google Scholar 

  10. Yakovlev G.I., Moiseyev G.P., Struminskaya N.K., Borzykh O.A., Kipenskaya L.V., Znamenskaya L.V., Leschinskaya I.B., Chernokalskaya E.B., Hartley R.W. 1994. Mutational analysis of the active site of RNase of Bacillus intermedius (BINASE). FEBS Lett. 354, 305–306.

    Article  CAS  PubMed  Google Scholar 

  11. Rosano, G.L., Ceccarelli E.A. 2014. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 5, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yoon S.H., Kim S.K., Kim J.F. 2010. Secretory production of recombinant proteins in Escherichia coli. Recent Pat. Biotechnol. 4, 23–29.

    Article  CAS  PubMed  Google Scholar 

  13. Pohl S., Bhavsar G., Hulme J., Bloor A.E., Misirli G., Leckenby M.W., Radford D.S., Smith W., Wipat A., Williamson E.D., Harwood C.R., Cranenburgh R.M. 2013. Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins. Proteomics. 13, 3298–3308.

    Article  CAS  PubMed  Google Scholar 

  14. Hartley R.W., Rogerson D.L., Jr., Smeaton J.R. 1972. Production and purification of the extracellular ribonuclease of Bacillus amyloliquefaciens (barnase) and its intracellular inhibitor (barstar). II. Barstar. Prep. Biochem. 2, 243‒250.

    CAS  PubMed  Google Scholar 

  15. Herzberg C., Weidinger L.A.F., Dörrbecker B., Hübner S., Stülke J., Commichau F.M. 2007. SPINE: A method for the rapid detection and analysis of protein–protein interactions in vivo. Proteomics. 7, 4032–4035.

    Article  CAS  PubMed  Google Scholar 

  16. Sambrook J., Russell D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Lab. Press. 3rd ed.

    Google Scholar 

  17. Harwood C.R., Cutting S.M. 1991. Molecular Biological Methods for Bacillus. Chichester: Wiley.

    Google Scholar 

  18. Kim R. 2011. Native agarose gel electrophoresis of multiprotein complexes. Cold Spring Harb. Protoc. 2011, 884–887.

    Article  PubMed  Google Scholar 

  19. Dudkina E., Ulyanova V., Shah Mahmud R., Khodzhaeva V., Dao L., Vershinina V., Kolpakov A., Ilinskaya O. 2016. Three-step procedure for preparation of pure Bacillus altitudinis ribonuclease. FEBS Open Biol. 6, 24–32.

    Article  CAS  Google Scholar 

  20. Li W., Zhou X., Lu P. 2004. Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res. Microbiol. 155, 605–610.

    Article  CAS  PubMed  Google Scholar 

  21. Ulyanova V.V., Khodzhaeva V.S., Dudkina E.V., Laykov A.V., Vershinina V.I., Ilinskaya O.N. 2015. Preparations of Bacillus pumilus secreted RNase: One enzyme or two? Microbiology (Moscow). 84, 491–497.

    Article  CAS  Google Scholar 

  22. Makarov A.A., Protasevich I.I., Kuznetsova N.V., Fedorov B.B., Korolev S.V., Struminskaya N.K., Bazhulina N.P., Leshchinskaya I.B., Hartley R.W., Kirpichnikov M.P., Yakovlev G.I., Esipova N.G. 1993. Comparative study of thermostability and structure of close homologues—barnase and binase. J. Biomol. Struct. Dyn. 10, 1047–1065.

    Article  CAS  PubMed  Google Scholar 

  23. Golubenko I., Balaban N., Leschinskaya I., Volkova T., Kleyner G., Chepurnova N., Afanasenko G., Dudkin S. 1979. Bacillus intermedius ribonuclease 7P. Purification by chromatography on phosphocellulose and some characteristics of the homogeneous enzyme. Biokhimiya. 44 (4), 640–648.

    CAS  Google Scholar 

  24. Shulga A.A., Okorokov A.L., Panov K.I., Kurbanov F.T., Chernov B.K., Skryabin K.G., Kirpichnikov M.P. 1994. Superproduction of Bacillus intermedius 7P ribonuclease (binase) in E. coli. Mol. Biol. 28 (2), 453–463.

    CAS  Google Scholar 

  25. Kaur J., Kumar A., Kaur J. 2018. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int. J. Biol. Macromol. 106, 803–822.

    Article  CAS  PubMed  Google Scholar 

  26. Bhatwa A., Wang W., Hassan Y.I., Abraham N., Li X.Z., Zhou T. 2021. Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front. Bioeng. Biotechnol. 9, 630551.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang K., Su L., Wu J. 2020. Recent advances in recombinant protein production by Bacillus subtilis. Annu. Rev. Food Sci. Technol. 11, 295–318.

    Article  CAS  PubMed  Google Scholar 

  28. Okorokov A.L., Panov K.I., Kolbanovskaya E.Y., Karpei-sky M.Y., Polyakov K.M., Wilkinson A.J., Dodson G.G. 1996. Site-directed mutagenesis of the base recognition loop of ribonuclease from Bacillus intermedius (binase). FEBS Lett. 384, 143–146.

    Article  CAS  PubMed  Google Scholar 

  29. Okorokov A.L., Panov K.I., Offen W.A., Mukhortov V.G., Antson A.A., Karpeisky M.Ya., Wilkinson A.J., Dodson G.G. 1997. RNA cleavage without hydrolysis. Splitting the catalytic activities of binase with Asn101 and Thr101 mutations. Protein Eng. 10, 273–278.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida H. 2001. The ribonuclease T1 family. Methods Enzymol. 341, 28–41.

    Article  CAS  PubMed  Google Scholar 

  31. Bachinsky A.G. 1976. Structure and noise immunity of the genetic code. Zh. Obshch. Biol. 37, 163–173.

    Google Scholar 

  32. Sneath P.H. 1966. Relations between chemical structure and biological activity in peptides. J. Theor. Biol. 12, 157–195.

    Article  CAS  PubMed  Google Scholar 

  33. Castro J., Ribó M., Vilanova M., Benito A. 2021. Strengths and challenges of secretory ribonucleases as antitumor agents. Pharmaceutics. 13, 82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gotte G., Menegazzi M. 2019. Biological activities of secretory RNases: Focus on their oligomerization to design antitumor drugs. Front. Immunol. 10, 2626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dudkina E.V., Ulyanova V.V., Ilinskaya O.N. 2020. Supramolecular organization as a factor of ribonuclease cytotoxicity. Acta Nat. 12, 24–33.

    Article  CAS  Google Scholar 

  36. Ilinskaya O., Singh I., Dudkina E., Ulyanova V., Kayumov A., Barreto G. 2016. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase). Biochim. Biophys. Acta, Mol. 1863, 1559–1567.

    CAS  Google Scholar 

  37. Hollestelle A., Elstrodt F., Nagel J., Kallemeijn W., Schutte M. 2007. Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol. Cancer Res. 5, 195–201.

    Article  CAS  PubMed  Google Scholar 

  38. Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella M., Lamba S., Martinoglio B., Veronese S., Siena S., Sartore-Bianchi A., Beccuti M., Mottolese M., Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A. 2015. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat. Commun. 6, 7002.

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y. H., Lv H., Shen N., Wang X. M., Tang S., Xiong B., Ding J., Geng M., Huang, M. 2020. EPHA2 feedback activation limits the response to PDEδ inhibition in KRAS-dependent cancer cells. Acta Pharmacol. Sin. 41, 270–277.

    Article  CAS  PubMed  Google Scholar 

  40. Ulyanova V., Dudkina E., Nadyrova A., Kalashnikov V., Surchenko Y., Ilinskaya O. 2020. The cytotoxicity of RNase-derived peptides. Biomolecules. 11, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zelenikhin P.V., Ead Mokhamed I.S., Nadyrova A.I., Sirotkina A.A., Ulyanova V.V., Mironova N.L., Mitkevich V.A., Makarov A.A., Zenkova M.A., Ilinskaya O.N. 2020. Bacillus pumilus ribonuclease inhibits migration of human duodenum adenocarcinoma HuTu 80 cells. Mol. Biol. (Moscow). 54, 128–133. https://doi.org/10.1134/S0026893320010173

    Article  CAS  Google Scholar 

  42. Alford S.C., Pearson J.D., Carette A., Ingham R.J., Howard P.L. 2009. Alpha-sarcin catalytic activity is not required for cytotoxicity. BMC Biochem. 10, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Navarro S., Aleu J., Jiménez M., Boix E., Cuchillo C.M., Nogués M.V. 2008. The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell. Mol. Life Sci. 65, 324–337.

    Article  CAS  PubMed  Google Scholar 

  44. Ilinskaya O., Ivanchenko O.B., Karamova N.S. 1995. Bacterial ribonuclease: Mutagenic effect in microbial test-systems. Mutagenesis. 10, 165–170.

    Article  CAS  PubMed  Google Scholar 

  45. Ilinskaya O.N., Karamova N.S., Ivanchenko O.B., Kipenskaya L.V. 1996. SOS-inducing ability of native and mutant microbial ribonucleases. Mutat. Res. 354, 203–209.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-74-10036) and the Ministry of Science and Higher Education of the Russian Federation (the program “Priority-2030”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Nadyrova.

Ethics declarations

Conflicts of interest. The authors declare that they have no conflicts of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadyrova, A.I., Kosnyrev, A.S., Ulyanova, V.V. et al. Efficiency of Escherichia coli and Bacillus subtilis Expression Systems for Production of Binase Mutants. Mol Biol 57, 825–835 (2023). https://doi.org/10.1134/S002689332305014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689332305014X

Keywords:

Navigation