Skip to main content
Log in

Combinational Overexpression of Foxa3 and Hnf4a Enhance the Proliferation and Prolong the Functional Maintenance of Primary Hepatocytes

  • MOLECULAR BIOLOGY OF THE CELL
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In an in vitro culture system, primary hepatocytes usually display a low proliferation capacity, accompanied with a decrease of viability and a loss of hepatocyte-specific functions. Previous studies have demonstrated that the combination introductions of certain hepatocyte-specific transcription factors are able to convert fibroblasts into functional hepatocyte-like cells. However, such combinational usage of transcription factors in primary hepatocytes culture has not yet sufficiently studied. The forkhead box protein A3 (FoxA3) and hepatocyte nuclear factor 4α (Hnf4α) are liver-enriched transcription factors that play vital roles in the differentiation, and maintenance of hepatocytes. Thus, we simultaneously overexpressed the two genes, Foxa3 and Hnf4a, in rat hepatocytes and observed that the combinational augmentation of these two transcription factors have enhanced the proliferation and stabilized the hepatocyte-specific functions of primary hepatocytes over a long-term culture period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Taub R. 2004. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell. Biol. 5, 836–847.

    Article  CAS  PubMed  Google Scholar 

  2. Li A.P. 2007. Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem. Biol. Interact. 168, 16–29.

    Article  CAS  PubMed  Google Scholar 

  3. Farinati F., Cardin R., D' Errico A., De Maria N., Naccarato R., Cecchetto A., Grigioni W. 1996. Hepatocyte proliferative activity in chronic liver damage as assessed by the monoclonal antibody MIB1 Ki67 in archival material: the role of etiology, disease activity, iron, and lipid peroxidation. Hepatology. 23, 1468–1475.

    Article  CAS  PubMed  Google Scholar 

  4. Michalopoulos G.K., De Frances M.C. 1997. Liver regeneration. Science. 276, 60–66.

    Article  CAS  PubMed  Google Scholar 

  5. Block G.D., Locker J., Bowen W.C., Petersen B.E., Katyal S., Strom S.C., Riley T., Howard T.A., Michalopoulos G.K. 1996. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J. Cell. Biol. 132, 1133–1149.

    Article  CAS  PubMed  Google Scholar 

  6. Mitaka T. 1998. The current status of primary hepatocyte culture. Int. J. Exp. Pathol. 79, 393–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang J., Xu L., Chen Q., Zhang Y., Hu Y., Yan L. 2015. Bone mesenchymal stem cells overexpressing FGF4 contribute to liver regeneration in an animal model of liver cirrhosis. Int. J. Clin. Exp. Med. 8, 12774–12782.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Berthiaume F., Moghe P.V., Toner M., Yarmush M.L. 1996. Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J. 10, 1471–1484.

    Article  CAS  PubMed  Google Scholar 

  9. Takashi H., Katsumi M., Toshihiro A. 2007. Hepatocytes maintain their function on basement membrane formed by epithelial cells. Biochem. Biophys. Res. Commun. 359 (1), 151–156.

    Article  CAS  PubMed  Google Scholar 

  10. Cho C.H., Berthiaume F., Tilles A.W., Yarmush M.L. 2008. A new technique for primary hepatocyte expansion in vitro. Biotechnol. Bioeng. 101, 345–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan G.D., Toh G.W., Birgersson E., Robens J., van Noort D., Leo H.L. 2013. A thin-walled polydimethylsiloxane bioreactor for high-density hepatocyte sandwich culture. Biotechnol. Bioeng. 110, 1663–1673.

    Article  CAS  PubMed  Google Scholar 

  12. Paul D., Hohne M., Pinkert C., Piasecki A., Ummelmann E., Brinster R.L. 1988. Immortalized differentiated hepatocyte lines derived from transgenic mice harboring SV40 T-antigen genes. Exp. Cell Res. 175, 354–362.

    Article  CAS  PubMed  Google Scholar 

  13. Wege H., Le H.T., Chui M.S., Liu L., Wu J., Giri R., Malhi H., Sappal B.S., Kumaran V., Gupta S., Zern M.A. 2003. Telomerase reconstitution immortalizes human fetal hepatocytes without disrupting their differentiation potential. Gastroenterology. 124, 432–444.

    Article  CAS  PubMed  Google Scholar 

  14. Tsuruga Y., Kiyono T., Matsushita M., Takahashi T., Kasai H., Matsumoto S., Todo S. 2008. Establishment of immortalized human hepatocytes by introduction of HPV16 E6/E7 and hTERT as cell sources for liver cell-based therapy. Cell Transplant. 17, 1083–1094.

    Article  PubMed  Google Scholar 

  15. Sekiya S., Suzuki A. 2011. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature. 475, 390–393.

    Article  CAS  PubMed  Google Scholar 

  16. Naldini L., Blomer U., Gallay P., Ory D., Mulligan R., Gage F.H., Verma I.M., Trono D. 1996. In vivo gene delivery and stable transduction of non dividing cells by a lentiviral vector. Science. 272, 263–267.

    Article  CAS  PubMed  Google Scholar 

  17. Kingston R.E., Chen C.A., Okayama H. 2003. Calcium phosphate transfection. Curr. Protoc. Cell. Biol. 20, 20–23.

    Google Scholar 

  18. Bowles N.E., Eisensmith R.C., Mohuiddin R., Pyron M., Woo S.L. 1996. A simple and efficient method for the concentration and purification of recombinant retrovirus for increased hepatocyte transduction in vivo. Hum. Gene Ther. 7, 1735–1742.

    Article  CAS  PubMed  Google Scholar 

  19. Lecluyse E.L., Alexandre E. 2010. Isolation and culture of primary hepatocytes from resected human liver tissue. Methods Mol. Biol. 640, 57–82.

    Article  CAS  PubMed  Google Scholar 

  20. Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative C (T) method. Nat. Protoc. 3, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  21. Yamada T., Yoshikawa M., Kanda S., Kato Y., Nakajima Y., Ishizaka S., Tsunoda Y. 2002. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells. 20, 146–154.

    Article  PubMed  Google Scholar 

  22. Shulman M., Nahmias Y. 2013. Long-term culture and coculture of primary rat and human hepatocytes. In Epithelial Cell Culture Protocols. 2nd ed. Randell H.S., Fulcher L.M., Eds. Totowa, NJ: Humana Press, pp. 287–302.

    Google Scholar 

  23. Schrem H., Klempnauer J., Borlak J. 2002. Liver-enriched transcription factors in liver function and development. Part I: the hepatocyte nuclear factor network and liver-specific gene expression. Pharmacol. Rev. 54, 129–158.

    Article  CAS  PubMed  Google Scholar 

  24. Huang P., He Z., Ji S., Sun H., Xiang D., Liu C., Hu Y., Wang X., Hui L. 2011. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature. 475, 386–389.

    Article  CAS  PubMed  Google Scholar 

  25. Du Y., Wang J., Jia J., Song N., Xiang C., Xu J., Hou Z., Su X., Liu B., Jiang T., Zhao D., Sun Y., Shu J., Guo Q., Yin M., Sun D., Lu S., Shi Y., Deng H. 2014. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 14, 394–403.

    Article  CAS  PubMed  Google Scholar 

  26. Huang P., Zhang L., Gao Y., He Z., Yao D., Xu J., Hou Z., Su X., Liu B., Jiang T., Zhao D., Sun Y., Shu J., Guo Q., Yin M., Sun D., Lu S., Shi Y., Deng H. 2014. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell. 14, 370–384.

    Article  CAS  PubMed  Google Scholar 

  27. Kim J., Kim K.P., Lim K.T., Lee S.C., Yoon J., Song G., Hwang S.I., Schöler H.R., Cantz T., Han D.W. 2015. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Sci. Rep. 5, 15706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tomizawa M., Shinozaki F., Motoyoshi Y., Sugiyama T., Yamamoto S., Ishige N. 2016. Transcription factors and medium suitable for initiating the differentiation of human induced pluripotent stem cells to the hepatocyte lineage. J. Cell Biochem. 117, 2001–2009.

    Article  CAS  PubMed  Google Scholar 

  29. Naiki T., Nagaki M., Asano T., Kimata T., Moriwaki H. 2005. Adenovirus-mediated hepatocyte nuclear factor-4alpha overexpression maintains liver phenotype in cultured rat hepatocytes. Biochem. Biophys. Res. Commun. 335, 496–500.

    Article  CAS  PubMed  Google Scholar 

  30. Cirillo L.A., Lin F.R., Cuesta I., Friedman D., Jarnik M., Zaret K.S. 2002. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell. 9, 279–289.

    Article  CAS  PubMed  Google Scholar 

  31. Wangensteen K.J., Zhang S., Greenbaum L.E., Kaestner K.H. 2015. A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes. Dev. 29, 904–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J., Ning G., Duncan S.A. 2000. Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes. Dev. 14, 464–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen W., Scearce L.M., Brestelli J.E., Sund N.J., Kaestner K.H. 2001. Foxa3 (hepatocyte nuclear factor 3 gamma) is required for the regulation of hepatic GLUT2 expression and the maintenance of glucose homeostasis during a prolonged fast. J. Biol. Chem. 276, 42812–42817.

    Article  CAS  PubMed  Google Scholar 

  34. Parviz F., Matullo C., Garrison W.D., Savatski L., Adamson J.W., Ning G., Kaestner K.H., Rossi J.M., Zaret K.S., Duncan S.A. 2003. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat. Genet. 34, 292–296.

    Article  CAS  PubMed  Google Scholar 

  35. Liu K., Guo M.G., Lou X.L., Li X.Y., Xu Y., Ji W.D., Huang X.D., Yang J.H., Duan J.C. 2015. Hepatocyte nuclear factor 4alpha induces a tendency of differentiation and activation of rat hepatic stellate cells. World J. Gastroenterol. 21, 5856–5866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klocke R., Gomez-Lechon M.J., Ehrhardt A., Mendoza-Figueroa T., Donato M.T., López-Revilla R., Castell J.V., Paul D. 2002. Establishment and characterization of immortal hepatocytes derived from various transgenic mouse lines. Biochem. Biophys. Res. Commun. 294, 864‒871.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research work was supported by grants from the National Science Foundation of China (U1804186 and 81671619), Henan province Foundation (202300410307, 212102310893, 212102310611, 22A180009 and 22A320043), Xinxiang City Foundation (GG2020009).

Author information

Authors and Affiliations

Authors

Contributions

Jinyu Fan and Ganesh Dama contributed equally to this work. Conceptualization, Jinyu Fan and Juntang Lin; methodology, Jinyu Fan, Ganesh Dama; investigation, Jinyu Fan, Ganesh Dama and Weiyun Guo; formal analysis, Jinyu Fan, Ganesh Dama and Weiyun Guo; resources, Juntang Lin; data curation, Jinyu Fan; preparation and writing original draft, Jinyu Fan; writing-revision and editing, Ganesh Dama and Yanli Liu; supervision, Juntang Lin; project administration, Juntang Lin; funding acquisition, Juntang Lin. The authors have approved the final version of this manuscript.

Corresponding author

Correspondence to J. T. Lin.

Ethics declarations

COMPLIANCE WITH ETHICAL STRANDARDS

Conflict of interest. All authors declared no competing interests.

Statement on the welfare of animals. This study was approved by the ethical committee and Animal Care Committee (no. 030032) of Xinxiang Medical University. All animal experiments were performed according to the guidelines of The Ministry of Science and Technology of the People’s Republic of China [(2006)398].

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J.Y., Dama, G., Liu, Y.L. et al. Combinational Overexpression of Foxa3 and Hnf4a Enhance the Proliferation and Prolong the Functional Maintenance of Primary Hepatocytes. Mol Biol 57, 661–669 (2023). https://doi.org/10.1134/S0026893323040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323040039

Keywords:

Navigation