Skip to main content
Log in

Insulator Protein CP190 Regulates Expression оf Spermatocyte Differentiation Genes in Drosophila melanogaster Male Germline

  • MOLECULAR BIOLOGY OF THE CELL
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

CP190 protein is one of the key components of Drosophila insulator complexes, and its study is important for understanding the mechanisms of gene regulation during cell differentiation. However, Cp190 mutants die before reaching adulthood, which significantly complicates the study of its functions in imago. To overcome this problem and to investigate the regulatory effects of CP190 in adult tissues development, we have designed a conditional rescue system for Cp190 mutants. Using Cre/loxP-mediated recombination, the rescue construct containing Cp190 coding sequence is effectively eliminated specifically in spermatocytes, allowing us to study the effect of the mutation in male germ cells. Using high-throughput transcriptome analysis we determined the function of CP190 on gene expression in germline cells. Cp190 mutation was found to have opposite effects on tissue-specific genes, which expression is repressed by CP190, and housekeeping genes, that require CP190 for activation. Mutation of Cp190 also promoted expression of a set of spermatocyte differentiation genes that are regulated by tMAC transcriptional complex. Our results indicate that the main function of CP190 in the process of spermatogenesis is the coordination of interactions between differentiation genes and their specific transcriptional activators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Long H.K., Prescott S.L., Wysocka J. 2016. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell. 167, 1170–1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kyrchanova O., Georgiev P. 2014. Chromatin insulators and long-distance interactions in Drosophila. FEBS Lett. 588, 8–14.

    Article  CAS  PubMed  Google Scholar 

  3. Yang J., Corces V.G. 2011. Chromatin insulators: a role in nuclear organization and gene expression, in Advances in Cancer Res. Woude G.W., Ed. 110, London: Academic, 43–76.

  4. Nègre N., Brown C.D., Shah P.K., Kheradpour P., Morrison C.A., Henikoff J.G., Feng X., Ahmad K., Russell S., White R.A.H., Stein L., Henikoff S., Kellis M., White K.P. 2010. A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet. 6, e1000814.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maksimenko O., Bartkuhn M., Stakhov V., Herold M., Zolotarev N., Jox T., Buxa M.K., Kirsch R., Bonchuk A., Fedotova A., Kyrchanova O., Renkawitz R., Georgiev P. 2015. Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin. Genome Res. 25, 89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zolotarev N., Maksimenko O., Kyrchanova O., Sokolinskaya E., Osadchiy I., Girardot C., Bonchuk A., Ciglar L., Furlong E.E.M., Georgiev P. 2017. Opbp is a new architectural/insulator protein required for ribosomal gene expression. Nucleic Acids Res. 45, 12285–12300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cuartero S., Fresán U., Reina O., Planet E., Espinàs M.L. 2014. Ibf1 and Ibf2 are novel CP190-interacting proteins required for insulator function. EMBO J. 33, 637–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schwartz Y.B., Linder-Basso D., Kharchenko P.V., Tolstorukov M.Y., Kim M., Li H.-B., Gorchakov A.A., Minoda A., Shanower G., Alekseyenko A.A., Riddle N.C., Jung Y.L., Gu T., Plachetka A., Elgin S.C.R., Kuroda M.I., Park P.J., Savitsky M., Karpen G.H., Pirrotta V. 2012. Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res. 22, 2188–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaushal A., Dorier J., Wang B., Mohana G., Taschner M., Cousin P., Waridel P., Iseli C., Semenova A., Restrepo S., Guex N., Aiden E. L., Gambetta M.C. 2022. Essential role of Cp190 in physical and regulatory boundary formation. Sci. Adv. 8, eabl8834.

  10. Sabirov M., Kyrchanova O., Pokholkova G.V., Bonchuk A., Klimenko N., Belova E., Zhimulev I.F., Maksimenko O., Georgiev P. 2021. Mechanism and functional role of the interaction between CP190 and the architectural protein Pita in Drosophila melanogaster. Epigenet. Chromatin. 14, 16.

    Article  CAS  Google Scholar 

  11. Bohla D., Herold M., Panzer I., Buxa M.K., Ali T., Demmers J., Krüger M., Scharfe M., Jarek M., Bartkuhn M., Renkawitz R. 2014. A functional insulator screen identifies NURF and dREAM components to be required for enhancer-blocking. PLoS One. 9, e107765.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ali T., Krüger M., Bhuju S., Jarek M., Bartkuhn M., Renkawitz R. 2017. Chromatin binding of Gcn5 in Drosophila is largely mediated by CP190. Nucleic Acids Res. 45, 2384–2395.

    Article  CAS  PubMed  Google Scholar 

  13. Bag I., Chen S., Rosin L.F., Chen Y., Liu C.-Y., Yu G.-Y., Lei E.P. 2021. M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity. Nat. Commun. 12, 4170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Savitsky M., Kim M., Kravchuk O., Schwartz Y.B. 2016. Distinct roles of chromatin insulator proteins in control of the Drosophila bithorax complex. Genetics. 202, 601–617.

    Article  CAS  PubMed  Google Scholar 

  15. Butcher R.D.J., Chodagam S., Basto R., Wakefield J.G., Henderson D.S., Raff J.W., Whitfield W.G.F. 2004. The Drosophila centrosome-associated protein CP190 is essential for viability but not for cell division. J. Cell Sci. 117, 1191–1199.

    Article  CAS  PubMed  Google Scholar 

  16. Oliver D., Sheehan B., South H., Akbari O., Pai C.Y. 2010. The chromosomal association/dissociation of the chromatin insulator protein Cp190 of Drosophila melanogaster is mediated by the BTB/POZ domain and two acidic regions. BMC Cell Biol. 11, 101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. White-Cooper H. 2010. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction. 139, 11–21.

    Article  CAS  PubMed  Google Scholar 

  18. Laktionov P.P., Maksimov D.A., Romanov S.E., Antoshina P.A., Posukh O.V., White-Cooper H., Koryakov D.E., Belyakin S.N. 2018. Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis. Epigenetics Chromatin. 11, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Markstein M., Pitsouli C., Villalta C., Celniker S.E., Perrimon N. 2008. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 40, 476–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laktionov P.P., Maksimov D.A., Andreyeva E.N., Shloma V.V., Belyakin S.N. 2013. A genetic system for somatic and germinal lineage tracing in the Drosophila melanogaster gonads. Tsitologiia. 55, 185–189.

    CAS  PubMed  Google Scholar 

  21. Solovei I., Cremer M. 2010. 3D-FISH on cultured cells combined with immunostaining, in Methods Mol. Biol. 659, Bridger J.M., Volpi E.M., Eds. New York: Humana Press, 117–126.

    Google Scholar 

  22. Golovnin A., Volkov I., Georgiev P. 2012. SUMO conjugation is required for the assembly of Drosophila Su(Hw) and Mod(mdg4) into insulator bodies that facilitate insulator complex formation. J. Cell Sci. 125, 2064–2074.

    CAS  PubMed  Google Scholar 

  23. Kim D., Paggi J.M., Park C., Bennett C., Salzberg S.L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liao Y., Smyth G.K., Shi W. 2014. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30, 923–930.

    Article  CAS  PubMed  Google Scholar 

  25. Love M.I., Huber W., Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stephens M. 2016. False discovery rates: a new deal. Biostatistics. 18, 275–294.

    PubMed Central  Google Scholar 

  27. Ignatiadis N., Klaus B., Zaugg J.B., Huber W. 2016. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat. Methods. 13, 577–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown J.B., Boley N., Eisman R., May G.E., Stoiber M.H., Duff M.O., Booth B.W., Wen J., Park S., Suzuki A.M., Wan K.H., Yu C., Zhang D., Carlson J.W., Cherbas L., Eads B.D., Miller D., Mockaitis K., Roberts J., Davis C.A., Frise E., Hammonds A.S., Olson S., Shenker S., Sturgill D., Samsonova A.A., Weiszmann R., Robinson G., Hernandez J., Andrews J., Bickel P.J., Carninci P., Cherbas P., Gingeras T.R., Hoskins R.A., Kaufman T.C., Lai E.C., Oliver B., Perrimon N., Graveley B.R., Celniker S.E. 2014. Diversity and dynamics of the Drosophila transcriptome. Nature. 512, 393–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Hoon M.J.L., Imoto S., Nolan J., Miyano S. 2004. Open source clustering software. Bioinformatics. 20, 1453–1454.

    Article  CAS  PubMed  Google Scholar 

  30. Jain A., Tuteja G. 2019. TissueEnrich: tissue-specific gene enrichment analysis. Bioinformatics. 35, 1966–1967.

    Article  CAS  PubMed  Google Scholar 

  31. Li H., Janssens J., De Waegeneer M., Kolluru S.S., Davie K., Gardeux V., Saelens W., David F.P.A., Brbić M., Spanier K., Leskovec J., McLaughlin C.N., Xie Q., Jones R.C., Brueckner K., Shim J., Tattikota S.G., Schnorrer F., Rust K., Nystul T.G., Carvalho-Santos Z., Ribeiro C., Pal S., Mahadevaraju S., Przytycka T.M., Allen A.M., Goodwin S.F., Berry C.W., Fuller M.T., White-Cooper H., Matunis E.L., DiNardo S., Galenza A., O’Brien L.E., Dow J.A.T.; FCA Consortium, Jasper H., Oliver B., Perrimon N., Deplancke B., Quake S.R., Luo L., Aerts S., Agarwal D., Ahmed-Braimah Y., Arbeitman M., Ariss M.M., Augsburger J., Ayush K., Baker C.C., Banisch T., Birker K., Bodmer R., Bolival B., Brantley S.E., Brill J.A., Brown N.C., Buehner N.A., Cai X.T., Cardoso-Figueiredo R., Casares F., Chang A., Clandinin T.R., Crasta S., Desplan C., Detweiler A.M., Dhakan D.B., Donà E., Engert S., Floc’hlay S., George N., González-Segarra A.J., Groves A.K., Gumbin S., Guo Y., Harris D.E., Heifetz Y., Holtz S.L., Horns F., Hudry B., Hung R.J., Jan Y.N., Jaszczak J.S., Jefferis G.S.X.E., Karkanias J., Karr T.L., Katheder N.S., Kezos J., Kim A.A., Kim S.K., Kockel L., Konstantinides N., Kornberg T.B., Krause H.M., Labott A.T., Laturney M., Lehmann R., Leinwand S., Li J., Li J.S.S., Li K., Li K., Li L., Li T., Litovchenko M., Liu H.H., Liu Y., Lu T.C., Manning J., Mase A., Matera-Vatnick M., Matias N.R., McDonough-Goldstein C.E., McGeever A., McLachlan A.D., Moreno-Roman P., Neff N., Neville M., Ngo S., Nielsen T., O’Brien C.E., Osumi-Sutherland D., Özel M.N., Papatheodorou I., Petkovic M., Pilgrim C., Pisco A.O., Reisenman C., Sanders E.N., Dos Santos G., Scott K., Sherlekar A., Shiu P., Sims D., Sit R.V., Slaidina M., Smith H.E., Sterne G., Su Y.H., Sutton D., Tamayo M., Tan M., Tastekin I., Treiber C., Vacek D., Vogler G., Waddell S., Wang W., Wilson R.I., Wolfner M.F., Wong Y.E., Xie A., Xu J., Yamamoto S., Yan J., Yao Z., Yoda K., Zhu R., Zinzen R.P. 2022. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science. 375, eabk2432.

  32. Hao Y., Hao S., Andersen-Nissen E., Mauck W.M., Zheng S., Butler A., Lee M.J., Wilk A.J., Darby C., Zager M., Hoffman P., Stoeckius M., Papalexi E., Mimitou E.P., Jain J., Srivastava A., Stuart T., Fle-ming L.M., Yeung B., Rogers A.J., McElrath J.M., Blish C.A., Gottardo R., Smibert P., Satija R. 2021. Integrated analysis of multimodal single-cell data. Cell. 184, 3573–3587. e29.

  33. Maksimov D.A., Laktionov P.P., Belyakin S.N. 2016. Data analysis algorithm for DamID-seq profiling of chromatin proteins in Drosophila melanogaster. Chromosome Res. 24 (4), 481‒494.

    Article  CAS  PubMed  Google Scholar 

  34. Akbari O.S., Oliver D., Eyer K., Pai C.-Y.Y. 2009. An entry/gateway cloning system for general expression of genes with molecular tags in Drosophila melanogaster. BMC Cell Biol. 10, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Evans C.J., Olson J.M., Ngo K.T., Kim E., Lee N.E., Kuoy E., Patananan A.N., Sitz D., Tran P., Do M.-T., Yackle K., Cespedes A., Hartenstein V., Call G.B., Banerjee U. 2009. G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat. Methods. 6, 603–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pindyurin A.V., Pagie L., Kozhevnikova E.N., van Arensbergen J., van Steensel B. 2016. Inducible DamID systems for genomic mapping of chromatin proteins in Drosophila. Nucleic Acids Res. 44, 5646–5657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee T., Luo L. 2001. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254.

    Article  CAS  PubMed  Google Scholar 

  38. Hu Y., Tattikota S.G., Liu Y., Comjean A., Gao Y., Forman C., Kim G., Rodiger J., Papatheodorou I., Santos G.D., Mohr S.E., Perrimon N. 2021. DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species. Comput. Struct. Biotechnol. J. 19, 2018–2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gönczy P., Matunis E., DiNardo S. 1997. bag-of-marbles and benign gonial cell neoplasm act in the germline to restrict proliferation during Drosophila spermatogenesis. Development (Cambridge). 124, 4361–4371.

    Article  Google Scholar 

  40. Bartkuhn M., Straub T., Herold M., Herrmann M., Rathke C., Saumweber H., Gilfillan G.D., Becker P.B., Renkawitz R. 2009. Active promoters and insulators are marked by the centrosomal protein 190. EMBO J. 28, 877–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chathoth K.T., Mikheeva L.A., Crevel G., Wolfe J.C., Hunter I., Beckett-Doyle S., Cotterill S., Dai H., Harrison A., Zabet N.R. 2022. The role of insulators and transcription in 3D chromatin organization of flies. Genome Res. 32, 682–698.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ilyin A.A., Kononkova A.D., Golova A.V., Shloma V.V., Olenkina O.M., Nenasheva V.V., Abramov Y.A., Kotov A.A., Maksimov D.A., Laktionov P.P., Pindyurin A.V., Galitsyna A.A., Ulianov S.V., Khrameeva E.E., Gelfand M.S., Belyakin S.N., Razin S.V., Shevelyov Y.Y. 2022. Comparison of genome architecture at two stages of male germline cell differentiation in Drosophila. Nucleic Acids Res. 50, 3203–3225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laktionov P.P., White-Cooper H., Maksimov D.A., Belyakin S.N. 2014. Transcription factor Comr acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster. Mol. Biol. (Moscow). 48, 130–140. https://doi.org/10.1134/S0026893314010087

    Article  CAS  Google Scholar 

  44. Lee H., Ohno K., Voskoboynik Y., Ragusano L., Martinez A., Dimova D.K. 2010. Drosophila RB proteins repress differentiation-specific genes via two different mechanisms. Mol. Cell. Biol. 30, 2563–2577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DeBruhl H., Wen H., Lipsick J.S. 2013. The complex containing Drosophila Myb and RB/E2F2 regulates cytokinesis in a histone H2Av-dependent manner. Mol. Cell. Biol. 33, 1809–1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Korenjak M., Kwon E., Morris R.T., Anderssen E., Amzallag A., Ramaswamy S., Dyson N.J. 2014. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes. Nucleic Acids Res. 42, 8939–8953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beall E.L., Lewis P.W., Bell M., Rocha M., Jones D.L., Botchan M.R. 2007. Discovery of tMAC: a Drosophila testis-specific meiotic arrest complex paralogous to Myb-Muv B. Genes Dev. 21, 904–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to acknowledge A.K. Golovnin for the provided antibodies (IGB RAS), A.V. Pindurin (IMCB SB RAS) for assistance in cloning, and the “Molecular and Cellular Biology” core facility for the provided equipment.

Funding

The reported study was funded by Russian Foundation for Basic Research, project nos. 19-34-90108, 17-00-00181, and 19-04-00872, and supported by Basic Science Research Program FWGZ-2021-0017 (122011900429-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Laktionov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The conditions in which Drosophila melanogaster was kept complied with the standards specified in Order of the Ministry of Health of Russia no. 267 of June 19, 2003 “On Approval of the Rules of Laboratory Practice in the Russian Federation.”

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, S.E., Shloma, V.V., Koryakov, D.E. et al. Insulator Protein CP190 Regulates Expression оf Spermatocyte Differentiation Genes in Drosophila melanogaster Male Germline. Mol Biol 57, 113–126 (2023). https://doi.org/10.1134/S0026893323010120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323010120

Keywords:

Navigation