Skip to main content
Log in

N-Domain of ArdA Antirestriction Proteins Inhibits the Repression Activity of the Histone-Like H-NS Protein

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

DNA mimicking ArdA anti-restriction proteins specifically inhibit restriction (endonuclease) activity of the type I restriction-modification (RM) system. An ArdA monomer is comprised of three α-β domains (the N-domain, Central domain, and C-domain), each with a different fold. Here we describe an alignment of the amino acid (a.a.) sequences of the ArdA with a conserved 20-a.a. motif in the N domain. The N domains of ArdA proteins of the Gram-positive bacteria Arthrobacter sp. and Bifidobacterium longum, and the Gram-negative bacteria Pseudomonas plecoglossicida are capable of inhibiting the repressive activity of the H-NS global silencer protein in Escherichia coli cells. The presence of the H-NS inhibiting N domain in the ArdA structure enables horizontal gene transfer by mobile elements, including conjugative plasmids and transposons. Specifically, it aids in overcoming intercellular restriction barriers, allowing faster adaption to the genome context of the recipient bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Belogurov A.A., Yussifov T.N., Kotova V.Yu., Zavilgelsky G.B. 1985. The novel gene(s) (ard) of plasmid pKM101: Alleviation of EcoKI restriction. Mol. Gen. Genet. 198, 509–513.

    Article  CAS  Google Scholar 

  2. Delver E.P., Kotova V.Yu., Zavilgelsky G.B., Belo-gurov A.A. 1991. Nucleotide sequence of the gene (ard) encoding the antirestriction protein of plasmid ColIb-P9. J. Bacteriol. 173 (18), 5887–5892.

    Article  CAS  Google Scholar 

  3. Chilley P.M., Wilkins B.M. 1995. Distribution of the ardA family of antirestriction genes on conjugative plasmids. Microbiology. 141, 2157–2164.

    Article  CAS  Google Scholar 

  4. Serfiotis-Mitsa D., Roberts G.A., Cooper L.P., White J.H., Nutley M., Cooper A., Blakely G.W., Dryden D.T.F. 2008. The Orf18 gene product from conjugative transposon Tn916 is an ArdA antirestriction protein that inhibits type I DNA restriction–modification systems. J. Mol. Biol. 383, 970–981.

    Article  CAS  Google Scholar 

  5. McMahon S.A., Roberts G.A., Johnson K.A., Cooper L.P., Liu H., White J.H., Carter L.G., Sanghvi B., Oke M., Walkinshaw M.D., Blakely G.W., Naismith J.H., Dryden D.T.F. 2009. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res. 37, 4887–4897.

    Article  CAS  Google Scholar 

  6. Belogurov A.A., Delver E.P. 1995. A motif conserved among the type I restriction-modification enzymes and antirestriction proteins: A possible basis for mechanism of action of plasmid-encoded anti-restriction functions. Nucleic Acids Res. 23, 785–787.

    Article  CAS  Google Scholar 

  7. Shen Y., Volrath S.L., Weatherly S.C., Elich T.D., Tong L. 2004. A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product. Mol. Cell. 16, 881–891.

    Article  CAS  Google Scholar 

  8. Nekrasov S.V., Agafonova O.V., Belogurova N.G., Delver E.P., Belogurov A.A. 2007. Plasmid-encoded antirestriction protein ArdA can discriminate between type I methyltransferase and complete restriction-modification system. J. Mol. Biol. 365, 281–297.

    Article  Google Scholar 

  9. Zavilgelsky G.B., Kotova V.Yu., Rastorguev S.M. 2008. Comparative analysis of antirestriction activities of ArdA (ColIb-P9) and Ocr (T7) proteins. Biochemistry (Moscow). 73 (8), 906–911.

    CAS  PubMed  Google Scholar 

  10. Walkinshaw M.D., Tylor P., Sturrock S.S., Atanasiu C., Berge T., Henderson R.M., Edwardson J.M., Dryden D.T.F. 2002. Structure of Ocr from bacteriophage T7, a protein that mimics B-form of DNA. Mol. Cell. 9, 187–194.

    Article  CAS  Google Scholar 

  11. Melkina O.E., Goryanin I.I., Zavilgelsky G.B. 2016. The DNA-mimic antirestriction proteins ArdA ColIb-P9, Arn T4, and Ocr T7 as activators of H-NS-dependent gene transcription. Microbiol. Res. 192, 283–291.

    Article  CAS  Google Scholar 

  12. Robin S., Togashi D., Ryder A.G., Wall J.G. 2009. Trigger factor from psychrophilic bacterium Psychrobacter frigidicola is a monomeric chaperone. J. Bacteriol. 191, 1162–1169.

    Article  CAS  Google Scholar 

  13. Ulitzur S., Matin A., Fraley C., Meighen E. 1997. H‑NS protein represses transcription of the lux systems of Vibrio fischeri and other luminous bacteria cloned into Escherichia coli. Curr. Microbiol. 35, 336–342.

    Article  CAS  Google Scholar 

  14. Ulitzur S. 1998. H-NS controls the transcription of three promoters of Vibrio fischeri lux cloned in Escherichia coli. J. Biolumin. Chemilumin. 13, 185–188.

    Article  CAS  Google Scholar 

  15. Van Dyk T., Rosson R.A. 1998. Photorhabdus luminescens luxCDABE promoter probe vectors. In: Methods in Molecular Biology. Ed. LaRossa R.A. Totowa, NY: Humana Press, 102, 85–95.

  16. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Lab. Press.

    Google Scholar 

  17. Liu Q., Richardson C.C. 1993. Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H-NS of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 90, 1761–1765.

    Article  CAS  Google Scholar 

  18. Ali S.S., Beckett E., Bac S.J., Nawarre W.W. 2011. The 5.5 protein of phage T7 inhibits H-NS through interactions with the central oligomerization domain. J. Bacteriol. 193, 4881–4892.

    Article  CAS  Google Scholar 

  19. Redgwell R.T., Michniewski S., Harrison D.C., Millard A. 2020. GenBank CAA6800530. University of Warwick, Coventry, UK.

    Google Scholar 

  20. Zhu B., Lee S.-J., Tan M., Wang E.-D., Richardson C.C. 2012. Gene 5.5 of bacteriophage T7 in complex with Escherichia coli nucleoid protein H-NS and transfer RNA masks transfer RNA priming in T7 replication. Proc. Natl. Acad. Sci. U. S. A. 109, 8050–8059.

    Article  CAS  Google Scholar 

  21. Dorman C.J. 2007. H-NS, the genome sentinel. Nat. Rev. Microbiol. 5, 157–161.

    Article  CAS  Google Scholar 

  22. Dillon S.C., Dorman C.J. 2010. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8, 185–195.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the NRC Kurchatov Institute, Sergei Rastorguev and Aleksei Kozhenkov, for their assistance in genome-wide sequencing of bacteria and the search for ardA nucleotide gene sequences.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-04-00495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Zavilgelsky.

Ethics declarations

The authors declare they have no conflict of interest. The study contains no research using humans or animals as objects of study.

Additional information

Abbreviations: a.a., amino acid residue (with number).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melkina, O.E., Zavilgelsky, G.B. N-Domain of ArdA Antirestriction Proteins Inhibits the Repression Activity of the Histone-Like H-NS Protein. Mol Biol 55, 424–431 (2021). https://doi.org/10.1134/S0026893321020266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020266

Keywords:

Navigation