Skip to main content
Log in

Comparative Analysis of MPTP Neurotoxicity in Mice with a Constitutive Knockout of the α-Synuclein Gene

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Aggregated forms of α-synuclein are core components of pathohistological inclusions known as Lewy bodies in substantia nigra (SN) neurons of patients with Parkinson’s disease (PD). The role of α-synuclein in selective loss of SN dopaminergic neurons (DNs) in PD is studied in mice knocked out in the α-synuclein gene. The new mouse strain delta flox KO with a constitutive knockout of the α-synuclein gene models the end point of in vivo deletion of the α-synuclein gene in mice with a conditional knockout and has no foreign sequence in the modified genomic locus, thus differing from all other α-synuclein knockout mouse strains. The effect of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is used to model PD, was compared between delta flox KO mice and mice of the well-known α-synuclein knockout strain AbKO. Subchronic MPTP administration, which models early PD, was found to reduce the dopamine content and to change the ratio of dopamine metabolites in the striatum to the same levels in delta flox KO, АbKO, and wild-type mice. Overt locomotor defects were not observed after MPTP treatment, but gait testing in a CatWalk XT (Noldus) system revealed identical gait deviations in mice of the two strains and control wild-type mice. Based on the findings, a similar mechanism of neurotoxic damage to DNs was assumed for delta flox KO and AbKO mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Shelkovnikova T.A., Kulikova A.A., Tsvetkov F.O., Peters O., Bachurin S.O., Bukhman V.L., Ninkina N.N. 2012. Proteinopathies: Neurodegenerative disorders with protein aggregation-based pathology. Mol. Biol. (Moscow). 46 (3), 362–374.

    Article  CAS  Google Scholar 

  2. Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R., Goedert M. 1997. Alpha-synuclein in Lewy bodies. Nature. 388 (6645), 839–840.

    Article  CAS  PubMed  Google Scholar 

  3. Emamzadeh F.N., Surguchov A. 2018. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front. Neurosci. 12, 612.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goedert M., Jakes R., Spillantini M.G. 2017. The synucleinopathies: Twenty years on. J. Parkinsons. Dis. 7 (Suppl. 1), S51–S69.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Caughey B., Lansbury P.T. 2003. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.

    Article  CAS  PubMed  Google Scholar 

  6. Dev K.K., Hofele K., Barbieri S., Buchman V.L., van der Putten H. 2003. Part II: Alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology. 45, 14–44.

    Article  CAS  PubMed  Google Scholar 

  7. Fink A.L. 2006. The aggregation and fibrillation of alpha-synuclein. Acc. Chem. Res. 39, 628–634.

    Article  CAS  PubMed  Google Scholar 

  8. Uversky V.N. 2007. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J. Neurochem. 103, 17–37.

    CAS  PubMed  Google Scholar 

  9. Uversky V.N. 2017. Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism. F1000Res. 6, 525.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Osterberg V.R., Spinelli K.J., Weston L.J., Luk K.C., Woltjer R.L., Unni V.K. 2015. Progressive aggregation of alpha-synuclein and selective degeneration of lewy inclusion-bearing neurons in a mouse model of parkinsonism. Cell Rep. 10, 1252–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ingelsson M. 2016. Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other lewy body disorders. Front. Neurosci. 10, 408.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Venda L.L., Cragg S.J., Buchman V.L., Wade-Martins R. 2010. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci. 33, 559–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burré J., Sharma M., Tsetsenis T., Buchman V., Etherton M.R., Südhof T.C. 2010. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 329 (5999), 1663–1667.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cabin D.E., Shimazu K., Murphy D., Cole N.B., Gottschalk W., McIlwain K.L., Orrison B., Chen A., Ellis C.E., Paylor R., Lu B., Nussbaum R.L. 2002. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J. Neurosci. 22, 8797–8807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fusco G., Pape T., Stephens A.D., Mahou P., Costa A.R., Kaminski C.F., Kaminski Schierle G.S., Vendruscolo M., Veglia G., Dobson C.M., De Simone A. 2016. Structural basis of synaptic vesicle assembly promoted by α‑synuclein. Nat. Commun. 7, 12563.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Logan T., Bendor J., Toupin C., Thorn K., Edwards R.H. 2017. α-Synuclein promotes dilation of the exocytotic fusion pore. Nat. Neurosci. 20, 681–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ganapathy K., Datta I., Sowmithra S., Joshi P., Bhonde R. 2016. Influence of 6-hydroxydopamine toxicity on α-synuclein phosphorylation, resting vesicle expression, and vesicular dopamine release. J. Cell Biochem. 117, 2719–2736.

    Article  CAS  PubMed  Google Scholar 

  18. Ninkina N.N., Tarasova T.V., Chaprov K.D., Goloborshcheva V.V., Bachurin S.O., Bukhman V.L. 2019. Synuclein deficiency decreases the efficiency of dopamine uptake by synaptic vesicles. Dokl. Biochem. Biophys. 486, 168–170.

    Article  CAS  PubMed  Google Scholar 

  19. Al-Wandi A., Ninkina N., Millership S., Williamson S.J., Jones P.A., Buchman V.L. 2010. Absence of alpha-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice. Neurobiol. Aging. 31 (5), 796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benskey M.J., Perez R.G., Manfredsson F.P. 2016. The contribution of alpha synuclein to neuronal survival and function: Implications for Parkinson’s disease. J. Neurochem. 137, 331–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Collier T.J., Eugene Redmond D., Steece-Collier K., Lipton J.W., Manfredsson F.P. 2016. Is alpha-synuclein loss-of-function a contributor to parkinsonian pathology? Evidence from non-human primates. Front. Neurosci. 10, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tarasova T.V., Lytkina O.A., Roman A.Yu., Bachurin S.O., Ustyugov A.A. 2016. Role of alpha-synuclein in the development of dopaminergic neurons in the substantia nigra and ventral tegmental area. Dokl. Akad. Nauk 466 (5), 620–623.

    Google Scholar 

  23. Tarasova T.V., Lytkina O.A., Goloborshcheva V.V., Skuratovskaya L.N., Antohin A.I., Ovchinnikov R.K., Kukharsky M.S. 2018. Genetic inactivation of alpha-synuclein affects embryonic development of dopaminergic neurons of the substantia nigra, but not the ventral tegmental area, in mouse brain. Peer J. 6, e4779.

    Article  PubMed  Google Scholar 

  24. Buchman V.L., Ninkina N. 2008. Modulation of α-synuclein expression in transgenic animals for modelling synucleinopathies: Is the juice worth the squeeze? Neurotox Res. 14, 329–341.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Abeliovich A., Schmitz Y., Fariñas I., Choi-Lundberg D., Ho W.H., Castillo P.E., Shinsky N., Verdugo J.M., Armanini M., Ryan A., Hynes M., Phillips H., Sulzer D., Rosenthal A. 2000. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 25, 239–252.

    Article  CAS  PubMed  Google Scholar 

  26. Schlüter O.M., Fornai F., Alessandrí M.G., Takamori S., Geppert M., Jahn R., Südhof T.C. 2003. Role of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience. 118, 985–1002.

    Article  PubMed  Google Scholar 

  27. Ninkina N., Connor-Robson N., Ustyugov A.A., Tarasova T.V., Shelkovnikova T.A., Buchman V.L. 2015. A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression. Sci. Rep. 5, 16615.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bachurin S.O., Sablin S.O., Grishina G.V., Gaidarova E.L., Dubova L.G., Zubov N.D. 1989. Catalytic biotransformation of physiologically active 1‑methyl-4-phenyl-1,2,3,6-tetrahydropyridines under the action of monoamine oxidase. Bioorg. Khim. 15 (5), 620–626.

    CAS  PubMed  Google Scholar 

  29. Sablin S.O., Krueger M.J., Bachurin S.O., Solyakov L.S., Efange S.M.N., Singer T.P. 1994. Oxidation products arising from the action of monoamine oxidase B on 1‑methyl-4-benzyl-1,2,3,6-tetrahydropyridine, a nonneurotoxic analogue of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Neurochem. 62 (5), 2012–2016.

    Article  CAS  PubMed  Google Scholar 

  30. Schober A. 2004. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 318 (1), 215–224.

    Article  PubMed  Google Scholar 

  31. Martí Y., Matthaeus F., Lau T., Schloss P. 2017. Methyl-4-phenylpyridinium (MPP+) differentially affects monoamine release and re-uptake in murine embryonic stem cell-derived dopaminergic and serotonergic neurons. Mol. Cell. Neurosci. 83, 37–45.

    Article  PubMed  Google Scholar 

  32. Bachurin S.O., Lukoyanov N.V., Petrova L.N., Solyakov L.S., Tkachenko S.E., Raevskii O.A. 1996. Inhibition of dopamine reuptake by analogs of 1-methyl-4-phenylpyridine, a neurotoxic metabolite: Structure–activity relationships. Dokl. Biochem. Biophys. 346, 5–7.

    Google Scholar 

  33. Bezard E., Gross C.E., Fournier M.C., Dovero S., Bloch B., Jaber M. 1999. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp. Neurol. 155, 268–273.

    Article  CAS  PubMed  Google Scholar 

  34. Ugrumov M. 2020. Development of early diagnosis of Parkinson’s disease: Illusion or reality? CNS Neurosci. Ther. 00, 1–13.

    Google Scholar 

  35. Rudenok M.M., Alieva A.X., Nikolaev M.A., Kolacheva A.A., Ugryumov M.V., Pchelina S.N., Slominsky P.A., Shadrina M.I. 2019. Possible involvement of genes related to lysosomal storage disorders in the pathogenesis of Parkinson’s disease. Mol. Biol. (Moscow). 53 (1), 24–31.

    Article  CAS  Google Scholar 

  36. Chia S.J., Tan E.K., Chao Y.X. 2020. Historical perspective: models of Parkinson’s disease. Int. J. Mol. Sci. 21 (7), 2464.

    Article  CAS  PubMed Central  Google Scholar 

  37. Thomas B., Mandir A.S., West N., Liu Y., Andrabi S.A., Stirling W., Dawson V.L., Dawson T.M., Lee M.K. 2011. Resistance to MPTP-neurotoxicity in α-synuclein knockout mice is complemented by human α-synuclein and associated with increased β-synuclein and Akt activation. PLoS One. 6 (1), e16706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sayre L.M., Wang F., Hoppel C.L. 1989. Tetraphenylborate potentiates the respiratory inhibition by the dopaminergic neurotoxin MPP+ in both electron transport particles and intact mitochondria. Biochem. Biophys. Res. Commun. 161, 809–818.

    Article  CAS  PubMed  Google Scholar 

  39. Bachurin S.O., Shevtzova E.P., Lermontova N.N., Serkova T.P., Ramsay R.R. 1996. The effect of dithiocarbamates on the neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and on mitochondrial respiratory chain. Neurotoxicology. 17 (3–4), 897–904.

    CAS  PubMed  Google Scholar 

  40. Lermontova N., Lukoyanov N., Serkova T., Lukoyanova E., Bachurin S. 1998. Effects of tacrine on deficits in active avoidance performance induced by AF64A in rats. Mol. Chem. Neuropathol. 33 (1), 51–61.

    Article  CAS  PubMed  Google Scholar 

  41. Milaeva E.R., Gerasimova O.A., Jingwei Z., Shpakovsky D.B., Syrbu S.A., Semeykin A.S., Koifman O.I., Kireeva E.G., Shevtsova E.F., Bachurin S.O., Zefirov N.S. 2008. Synthesis and antioxidative activity of metalloporphyrins bearing 2,6-di-tert-butylphenol pendants. J. Inorg. Biochem. 102 (5–6), 1348–1358.

    Article  CAS  PubMed  Google Scholar 

  42. Perlovich G.L., Proshin A.N., Volkova T.V., Petrova L.N., Bachurin S.O. 2012. Novel 1,2,4-thiadiazole derivatives as potent neuroprotectors: Approach to creation of bioavailable drugs. Mol. Pharm. 9 (8), 2156–2167.

    Article  CAS  PubMed  Google Scholar 

  43. Petroske E., Meredith G.E., Callen S., Totterdell S., Lau Y.S. 2001. Mouse model of Parkinsonism: A comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience. 106, 589–601.

    Article  CAS  PubMed  Google Scholar 

  44. Chaprov K.D., Goloborshcheva V.V., Tarasova T.V., Teterina E.V., Korokin M.V., Soldatov V.O., Pokrovskii M.V., Kucheryanu V.G., Morozov S.G., Ovchinnikov R.K. 2020. Enhancement of mutimerin 1 gene expression in the nervous system of mice as a result of genomic modification of the alpha-synuclein locus. Dokl. Akad. Nauk. 494, 537–540.

    Google Scholar 

  45. Tarasova T.V., Ustyugov A.A., Ninkina N.N., Skvortsova V.I. 2016. A new line of genetically modified mice with constitutively knocked-out alpha-synuclein gene for studying pathogenetic aspects of differential damage to dopaminergic neurons. Patol. Fiziol. Eksp. Ter. 60 (3), 4–9.

    CAS  PubMed  Google Scholar 

  46. Roman A.Y., Limorenko G., Ustyugov A.A., Tarasova T.V., Lysikova E.A., Buchman V.L., Ninkina N. 2017. Generation of mouse lines with conditionally or constitutively inactivated Snca gene and Rosa26-stop-lacZ reporter located in cis on the mouse chromosome 6. Transgenic Res. 26 (2), 301–307.

    Article  CAS  PubMed  Google Scholar 

  47. Robertson D.C., Schmidt O., Ninkina N., Jones P.A., Sharkey J., Buchman V.L. 2004. Developmental loss and resistance to MPTP toxicity of dopaminergic neurons in substantia nigra pars compacta of gamma-synuclein, alpha-synuclein and double alpha/gamma-synuclein null mutant mice. J. Neurochem. 89 (5), 1126–1136.

    Article  CAS  PubMed  Google Scholar 

  48. Anwar S., Peters O., Millership S., Ninkina. N., Doig N., Connor-Robson N., Threlfell S., Kooner G., Deacon R.M., Bannerman D.M., Bolam J.P., Chandra S.S., Cragg S.J., Wade-Martins R., Buchman V.L. 2011. Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family. J. Neurosci. 31 (20), 7264–7274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ninkina N., Tarasova T.V., Chaprov K.D., Roman A.Y., Kukharsky M.S., Kolik L.G., Ovchinnikov R., Ustyugov A.A., Durnev A.D., Buchman V.L. 2020. Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice. Neurobiol. Aging. 91, 76–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Connor-Robson N., Peters O.M., Millership S., Nin-kina N., Buchman V.L. 2016. Combinational losses of synucleins reveal their differential requirements for compensating age-dependent alterations in motor behavior and dopamine metabolism. Neurobiol. Aging. 46, 107–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Minakaki G., Canneva F., Chevessier F., Bode F., Menges S., Timotius I.K., Kalinichenko L.S., Meixner H., Müller C.P., Eskofier B.M., Casadei N., Riess O., Schröder R., Winkler J., Xiang W., et al. 2019. Treadmill exercise intervention improves gait and postural control in alpha-synuclein mouse models without inducing cerebral autophagy. Behav. Brain Res. 363, 199–215.

    Article  PubMed  Google Scholar 

  52. Zimprich A., Östereicher M.A., Becker L., Dirscherl P., Ernst L., Fuchs H., Gailus-Durner V., Garrett L., Giesert F., Glasl L., Hummel A., Rozman J., de Angelis M.H., Vogt-Weisenhorn D., Wurst W., Hölter S.M. 2018. Analysis of locomotor behavior in the German Mouse Clinic. J. Neurosci. Meth. 300, 77–91.

    Article  Google Scholar 

  53. Song A.J., Palmiter R.D. 2018. Detecting and avoiding problems when using the Cre–lox system. Trends Genet. 34(5), 333–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kolacheva A.A., Ugryumov M.V. 2018. Dopamine synthesis as a mechanism of brain plasticity in nigrostriatal system pathology. Dokl. Biochem. Biophys. 479, 83–86.

    Article  CAS  PubMed  Google Scholar 

  55. Safandeev V.V., Kolacheva A.A., Ivanov D.E., Ugryumov M.V. 2017. Detection of the latent functional insufficiency of dopaminergic neurons in the nigrostriatal system in a chronic model of Parkinson’s disease. Neurochem. J. 11 (4), 290–295.

    Article  CAS  Google Scholar 

  56. Kozina E.A., Kolacheva A.A., Kudrin V.S., Kucheryanu V.G., Khaindrava V.G., Ugryumov M.V. 2016. Chronic models of the preclinical and early clinical stages of Parkinson’s disease in mice. Neurochem. J. 10 (3), 211–219.

    Article  Google Scholar 

  57. Rozhdestvenskii A.S., Delov R.A., Marks E.A., Gaponenko I.A., Khanokh E.V., Rozhdestvenskii V.A., Illarioshkin S.N. 2020. Studies on fundamental and applied aspects of Parkinson’s disease as part of the GEoPD international consprtium. Nerv. Bolezni. 1, 10–15.

    Google Scholar 

  58. Chigaleichik L.A., Karabanov A.V., Poleshchuk V.V., Illarioshkin S.N. 2018. Modern technologies for studying postural disturbances in Parkinson’s disease. Vestn. Ross. Voenno-Med. Akad. S3, 116–117.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-14-00064). Behavioral testing was supported by the Russian Foundation for Basic Research (project no. 19-315–90049) and was carried out using equipment of the Collective Access Center at the Institute of Physiologically Active Compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Chaprov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Experiments were carried out in compliance with Order no. 199n “On the Approval of Good Laboratory Practice Guidelines” dated April 1, 2016 of the Ministry of Health of the Russian Federation.

Additional information

Translated by T. Tkacheva

Abbreviations: PD, Parkinson’s disease; DN, dopaminergic neuron; SN, substantia nigra; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaprov, K.D., Teterina, E.V., Roman, A.Y. et al. Comparative Analysis of MPTP Neurotoxicity in Mice with a Constitutive Knockout of the α-Synuclein Gene. Mol Biol 55, 133–142 (2021). https://doi.org/10.1134/S0026893321010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321010039

Keywords:

Navigation