Skip to main content
Log in

RNA Degradation in Eukaryotic Cells

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

RNA is a crucial component of every living organism and is necessary for gene expression and its regulation in the cell. Mechanisms of RNA synthesis (especially mRNA synthesis) were a subject of extensive study for a long time. More recently, RNA degradation pathways began to be considered as equally important part of eukaryotic cell metabolism. These pathways have been studied intensely, and ample information accumulated about RNA degradation systems and their role in cell life. It is currently obvious that RNA decay is of no less importance as RNA synthesis and contributes to regulating the RNA level in the cell. The review considers the main RNA degradation enzymes, the decay pathways of various coding and non-coding RNAs, the mechanisms providing RNA quality control in the nucleus and cytoplasm, and certain structural elements responsible for RNA stability or short life in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Koval A.P., Gogolevskaya I.K., Tatosyan K.A., Kramerov D.A. 2012. Complementarity of end regions increases the lifetime of small RNAs in mammalian cells. PloS One.7, e44157.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Koval A.P., Gogolevskaya I.K., Tatosyan K.A., Kramerov D.A. 2015. A 5'-3'-terminal stem in small non-coding RNAs extends their lifetime. Gene.555, 464–468.

    CAS  PubMed  Google Scholar 

  3. Clark M.B., Johnston R.L., Inostroza-Ponta M., Fox A.H., Fortini E., Moscato P., Dinger M.E., Mattick J.S. 2012. Genome-wide analysis of long noncoding RNA stability. Genome Res.22, 885–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gorgoni B., Gray N.K. 2004. The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective. Brief. Funct. Genomic Proteomic.3, 125–141.

    CAS  PubMed  Google Scholar 

  5. Goodarzi H., Najafabadi H.S., Oikonomou P., Greco T.M., Fish L., Salavati R., Cristea I.M., Tavazoie S. 2012. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature.485, 264–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ustyantsev I.G., Tatosyan K.A., Stasenko D.V., Kochanova N.Yu., Krameriv D.A. 2020. Polyadenylation of Sine transcripts generated by RNA polymerase III dramatically prolongs their lifetime in cells. Mol. Biol. (Moscow). 54 (1), 67–74.

    CAS  Google Scholar 

  7. Mugridge J.S., Coller J., Gross J.D. 2018. Structural and molecular mechanisms for the control of eukaryotic 5'-3' mRNA decay. Nat. Struct.Mol. Biol.25, 1077–1085.

    CAS  PubMed  Google Scholar 

  8. Nicholson A.L., Pasquinelli A.E. 2019. Tales of detailed poly(A) tails. Trends Cell Biol.29, 191–200.

    CAS  PubMed  Google Scholar 

  9. Whipple J.M., Lane E.A., Chernyakov I., D’Silva S., Phizicky E.M. 2011. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. Genes Dev.25, 1173–1184.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown J.A., Valenstein M.L., Yario T.A., Tycowski K.T., Steitz J.A. 2012. Formation of triple-helical structures by the 3'-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc. Natl. Acad. Sci. U. S. A.109, 19202–19207.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ji L., Chen X. 2012. Regulation of small RNA stability: methylation and beyond. Cell Res.22, 624–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Papasaikas P., Valcarcel J. 2016. The spliceosome: The ultimate RNA chaperone and sculptor. Trends Biochem. Sci.41, 33–45.

    CAS  PubMed  Google Scholar 

  13. Wild K., Weichenrieder O., Strub K., Sinning I., Cusack S. 2002. Towards the structure of the mammalian signal recognition particle. Curr. Opin. Struct. Biol.12, 72–81.

    CAS  PubMed  Google Scholar 

  14. Peterlin B.M., Brogie J.E., Price D.H. 2012. 7SK snRNA: A noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdisc. Rev. RNA.3, 92–103.

    CAS  Google Scholar 

  15. Labno A., Tomecki R., Dziembowski A. 2016. Cytoplasmic RNA decay pathways: Enzymes and mechanisms. Biochim. Biophys. Acta.1863, 3125–3147.

    CAS  PubMed  Google Scholar 

  16. Luan S., Luo J., Liu H., Li Z. 2019. Regulation of RNA decay and cellular function by 3'-5' exoribonuclease DIS3L2. RNA Biol.16, 160–165.

    PubMed  PubMed Central  Google Scholar 

  17. Januszyk K., Lima C.D. 2014. The eukaryotic RNA exosome. Curr. Opin. Struct. Biol.24, 132–140.

    CAS  PubMed  Google Scholar 

  18. Bonneau F., Basquin J., Ebert J., Lorentzen E., Conti E. 2009. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell.139, 547–559.

    CAS  PubMed  Google Scholar 

  19. Wasmuth E.V., Lima C.D. 2012. Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol. Cell.48, 133–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Januszyk K., Liu Q., Lima C.D. 2011. Activities of human RRP6 and structure of the human RRP6 catalytic domain. RNA.17, 1566–1577.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chlebowski A., Lubas M., Jensen T.H., Dziembowski A. 2013. RNA decay machines: The exosome. Biochim. Biophys. Acta.1829, 552–560.

    CAS  PubMed  Google Scholar 

  22. Doma M.K., Parker R. 2007. RNA quality control in eukaryotes. Cell.131, 660–668.

    CAS  PubMed  Google Scholar 

  23. Kadaba S., Wang X., Anderson J.T. 2006. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA.12, 508–521.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanacova S., Wolf J., Martin G., Blank D., Dettwiler S., Friedlein A., Langen H., Keith G., Keller W. 2005. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol.3, e189.

    PubMed  Google Scholar 

  25. San Paolo S., Vanacova S., Schenk L., Scherrer T., Blank D., Keller W., Gerber A.P. 2009. Distinct roles of non-canonical poly(A) polymerases in RNA metabolism. PLoS Genet.5, e1000555.

    PubMed  Google Scholar 

  26. Jia H., Wang X., Anderson J.T., Jankowsky E. 2012. RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex. Proc. Natl. Acad. Sci. U. S. A.109, 7292–7297.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tudek A., Lloret-Llinares M., Jensen T.H. 2018. The multitasking polyA tail: Nuclear RNA maturation, degradation and export. Philos. Tran. R. Soc. Lond. B.373, 20180169.

  28. Lubas M., Andersen P.R., Schein A., Dziembowski A., Kudla G., Jensen T.H. 2015. The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rept.10, 178–192.

    CAS  Google Scholar 

  29. Halbach F., Reichelt P., Rode M., Conti E. 2013. The yeast ski complex: Crystal structure and RNA channeling to the exosome complex. Cell.154, 814–826.

    CAS  PubMed  Google Scholar 

  30. Kalisiak K., Kulinski T.M., Tomecki R., Cysewski D., Pietras Z., Chlebowski A., Kowalska K., Dziembowski A. 2017. A short splicing isoform of HBS1L links the cytoplasmic exosome and SKI complexes in humans. Nucleic Acids Res.45, 2068–2080.

    CAS  PubMed  Google Scholar 

  31. Nagarajan V.K., Jones C.I., Newbury S.F., Green P.J. 2013. XRN 5'→3' exoribonucleases: Structure, mechanisms and functions. Biochim. Biophys. Acta.1829, 590–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiang S., Cooper-Morgan A., Jiao X., Kiledjian M., Manley J.L., Tong L. 2009. Structure and function of the 5'→3' exoribonuclease Rat1 and its activating partner Rai1. Nature.458, 784–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cougot N., van Dijk E., Babajko S., Seraphin B. 2004. “Cap-tabolism”. Trends Biochem. Sci.29, 436–444.

    CAS  PubMed  Google Scholar 

  34. Perales R., Bentley D. 2009. “Cotranscriptionality”: The transcription elongation complex as a nexus for nuclear transactions. Mol. Cell.36, 178–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chapman K.B., Boeke J.D. 1991. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell.65, 483–492.

    CAS  PubMed  Google Scholar 

  36. Ustyantsev I.G., Golubchikova Yu.S., Borodulina O.R., Kramerov D.A. 2017. Canonical and noncanonical RNA polyadenylation. Mol. Biol. (Moscow). 51, (2), 2626–236.

    Google Scholar 

  37. Eckmann C.R., Rammelt C., Wahle E. 2011. Control of poly(A) tail length. Wiley Interdisc. Rev. RNA.2, 348–361.

    CAS  Google Scholar 

  38. Wilusz C.J., Wilusz J. 2008. New ways to meet your (3') end oligouridylation as a step on the path to destruction. Genes Dev.22, 1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tollervey D. 2004. Molecular biology: Termination by torpedo. Nature.432, 456–457.

    CAS  PubMed  Google Scholar 

  40. Porrua O., Libri D. 2013. RNA quality control in the nucleus: The Angels’ share of RNA. Biochim. Biophys. Acta.1829, 604–611.

    CAS  PubMed  Google Scholar 

  41. Saguez C., Schmid M., Olesen J.R., Ghazy M.A., Qu X., Poulsen M.B., Nasser T., Moore C., Jensen T.H. 2008. Nuclear mRNA surveillance in THO/sub2 mutants is triggered by inefficient polyadenylation. Mol. Cell.31, 91–103.

    CAS  PubMed  Google Scholar 

  42. Rougemaille M., Villa T., Gudipati R.K., Libri D. 2008. mRNA journey to the cytoplasm: Attire required. Biol. Cell.100, 327–342.

    CAS  PubMed  Google Scholar 

  43. Schmid M., Jensen T.H. 2010. Nuclear quality control of RNA polymerase II transcripts. Wiley Interdisc. Rev. RNA.1, 474–485.

    CAS  Google Scholar 

  44. Hopfield J.J. 1974. Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. U. S. A.71, 4135–4139.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Houseley J., Tollervey D. 2009. The many pathways of RNA degradation. Cell.136, 763–776.

    CAS  PubMed  Google Scholar 

  46. Bresson S.M., Conrad N.K. 2013. The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genet.9, e1003893.

    PubMed  PubMed Central  Google Scholar 

  47. Bresson S.M., Hunter O.V., Hunter A.C., Conrad N.K. 2015. Canonical poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet.11, e1005610.

    PubMed  PubMed Central  Google Scholar 

  48. Wahle E., Winkler G.S. 2013. RNA decay machines: Deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim. Biophys. Acta.1829, 561–570.

    CAS  PubMed  Google Scholar 

  49. Zheng D., Ezzeddine N., Chen C.Y., Zhu W., He X., Shyu A.B. 2008. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J. Cell Biol.182, 89–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen C.Y., Shyu A.B. 2011. Mechanisms of deadenylation-dependent decay. Wiley Interdisc. Rev. RNA.2, 167–183.

    CAS  Google Scholar 

  51. Milac A.L., Bojarska E., Wypijewska del Nogal A. 2014. Decapping scavenger (DcpS) enzyme: Advances in its structure, activity and roles in the cap-dependent mRNA metabolism. Biochim. Biophys. Acta.1839, 452–462.

    CAS  PubMed  Google Scholar 

  52. Chowdhury A., Mukhopadhyay J., Tharun S. 2007. The decapping activator Lsm1p–7p–Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA.13, 998–1016.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Luo Y., Na Z., Slavoff S.A. 2018. P-bodies: composition, properties, and functions. Biochemistry.57, 2424–2431.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sheth U., Parker R. 2003. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science.300, 805–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lim J., Ha M., Chang H., Kwon S.C., Simanshu D.K., Patel D.J., Kim V.N. 2014. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell.159, 1365–1376.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Munoz-Tello P., Rajappa L., Coquille S., Thore S. 2015. Polyuridylation in eukaryotes: A 3'-end modification regulating RNA life. BioMed Res. Internat.2015, 968127.

    Google Scholar 

  57. Zigackova D., Vanacova S. 2018. The role of 3' end uridylation in RNA metabolism and cellular physiology. Philos. Trans. R. Soc. Lond. B.373, 20180171.

    Google Scholar 

  58. Chang H., Lim J., Ha M., Kim V.N. 2014. TAIL-seq: Genome-wide determination of poly(A) tail length and 3' end modifications. Mol. Cell.53, 1044–1052.

    CAS  PubMed  Google Scholar 

  59. Rissland O.S., Norbury C.J. 2009. Decapping is preceded by 3' uridylation in a novel pathway of bulk mRNA turnover. Nat. Struct. Mol. Biol.16, 616–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Song M.G., Kiledjian M. 2007. 3' Terminal oligo U‑tract-mediated stimulation of decapping. RNA.13, 2356–2365.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Haas G., Cetin S., Messmer M., Chane-Woon-Ming B., Terenzi O., Chicher J., Kuhn L., Hammann P., Pfeffer S. 2016. Identification of factors involved in target RNA-directed microRNA degradation. Nucleic Acids Res.44, 2873–2887.

    PubMed  PubMed Central  Google Scholar 

  62. Lapointe C.P., Wickens M. 2013. The nucleic acid-binding domain and translational repression activity of a Xenopus terminal uridylyl transferase. J. Biol. Chem.288, 20723–20733.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sement F.M., Ferrier E., Zuber H., Merret R., Alioua M., Deragon J.M., Bousquet-Antonelli C., Lange H., Gagliardi D. 2013. Uridylation prevents 3' trimming of oligoadenylated mRNAs. Nucleic Acids Res.41, 7115–7127.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Thomas M.P., Liu X., Whangbo J., McCrossan G., Sanborn K.B., Basar E., Walch M., Lieberman J. 2015. Apoptosis triggers specific, rapid, and global mRNA decay with 3' uridylated intermediates degraded by DIS3L2. Cell Repts.11, 1079–1089.

    CAS  Google Scholar 

  65. Malecki M., Viegas S.C., Carneiro T., Golik P., Dressaire C., Ferreira M.G., Arraiano C.M. 2013. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J.32, 1842–1854.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Le Pen J., Jiang H., Di Domenico T., Kneuss E., Kosalka J., Leung C., Morgan M., Much C., Rudolph K.L.M., Enright A.J., O’Carroll D., Wang D., Miska E.A. 2018. Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nat. Struct. Mol. Biol.25, 778–786.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pandey N.B., Marzluff W.F. 1987. The stem-loop structure at the 3' end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell. Biol.7, 4557–4559.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tan D., Marzluff W.F., Dominski Z., Tong L. 2013. Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3'hExo ternary complex. Science.339, 318–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lackey P.E., Welch J.D., Marzluff W.F. 2016. TUT7 catalyzes the uridylation of the 3' end for rapid degradation of histone mRNA. RNA.22, 1673–1688.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mullen T.E., Marzluff W.F. 2008. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. Genes Dev.22, 50–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoefig K.P., Rath N., Heinz G.A., Wolf C., Dameris J., Schepers A., Kremmer E., Ansel K.M., Heissmeyer V. 2013. Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat. Struct. Mol. Biol.20, 73–81.

    CAS  PubMed  Google Scholar 

  72. Barreau C., Paillard L., Osborne H.B. 2005. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res.33, 7138–7150.

    CAS  PubMed  Google Scholar 

  73. Fan X.C., Myer V.E., Steitz J.A. 1997. AU-rich elements target small nuclear RNAs as well as mRNAs for rapid degradation. Genes Dev.11, 2557–2568.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gherzi R., Lee K.Y., Briata P., Wegmuller D., Moroni C., Karin M., Chen C.Y. 2004. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell.14, 571–583.

    CAS  PubMed  Google Scholar 

  75. Sanduja S., Blanco F.F., Dixon D.A. 2011. The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdisc. Rev. RNA.2, 42–57.

    CAS  Google Scholar 

  76. Mukherjee D., Gao M., O’Connor J.P., Raijmakers R., Pruijn G., Lutz C.S., Wilusz J. 2002. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J.21, 165–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stoecklin G., Mayo T., Anderson P. 2006. ARE-mRNA degradation requires the 5'-3' decay pathway. EMBO Repts.7, 72–77.

    CAS  Google Scholar 

  78. Gratacos F.M., Brewer G. 2010. The role of AUF1 in regulated mRNA decay. Wiley Interdisc. Rev. RNA.1, 457–473.

    CAS  Google Scholar 

  79. Shyu A.B., Belasco J.G., Greenberg M.E. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev.5, 221–231.

    CAS  PubMed  Google Scholar 

  80. Grosset C., Chen C.Y., Xu N., Sonenberg N., Jacquemin-Sablon H., Shyu A.B. 2000. A mechanism for translationally coupled mRNA turnover: Interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell.103, 29–40.

    CAS  PubMed  Google Scholar 

  81. Chang T.C., Yamashita A., Chen C.Y., Yamashita Y., Zhu W., Durdan S., Kahvejian A., Sonenberg N., Shyu A.B. 2004. UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev.18, 2010–2023.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lemm I., Ross J. 2002. Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol.Cell. Biol.22, 3959–3969.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wisdom R., Lee W. 1991. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev.5, 232–243.

    CAS  PubMed  Google Scholar 

  84. Vlasova-St Louis I., Dickson A.M., Bohjanen P.R., Wilusz C.J. 2013. CELFish ways to modulate mRNA decay. Biochim. Biophys. Acta.1829, 695–707.

    CAS  PubMed  Google Scholar 

  85. Jaillon O., Bouhouche K., Gout J.F., Aury J.M., Noel B., Saudemont B., Nowacki M., Serrano V., Porcel B.M., Segurens B., Le Mouel A., Lepere G., Schachter V., Betermier M., Cohen J., et al. 2008. Translational control of intron splicing in eukaryotes. Nature.451, 359–362.

    CAS  PubMed  Google Scholar 

  86. Mendell J.T., Sharifi N.A., Meyers J.L., Martinez-Murillo F., Dietz H.C. 2004. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet.36, 1073–1078.

    CAS  PubMed  Google Scholar 

  87. Schweingruber C., Rufener S.C., Zund D., Yamashita A., Muhlemann O. 2013. Nonsense-mediated mRNA decay: Mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim. Biophys. Acta.1829, 612–623.

    CAS  PubMed  Google Scholar 

  88. Gardner L.B. 2008. Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol. Cell. Biol.28, 3729–3741.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li Z., Vuong J.K., Zhang M., Stork C., Zheng S. 2017. Inhibition of nonsense-mediated RNA decay by ER stress. RNA.23, 378–394.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin L., Gardner L.B. 2015. Stress-induced inhibition of nonsense-mediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11. Oncogene.34, 4211–4218.

    CAS  PubMed  Google Scholar 

  91. Yepiskoposyan H., Aeschimann F., Nilsson D., Okoniewski M., Muhlemann O. 2011. Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA.17, 2108-2118.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. McGlincy N.J., Smith C.W. 2008. Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem. Sci.33, 385–393.

    CAS  PubMed  Google Scholar 

  93. Rossbach O., Hung L.H., Schreiner S., Grishina I., Heiner M., Hui J., Bindereif A. 2009. Auto- and cross-regulation of the hnRNP L proteins by alternative splicing. Mol. Cell Biol.29, 1442–1451.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wollerton M.C., Gooding C., Wagner E.J., Garcia-Blanco M.A., Smith C.W. 2004. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol. Cell.13, 91–100.

    CAS  PubMed  Google Scholar 

  95. Izumikawa K., Yoshikawa H., Ishikawa H., Nobe Y., Yamauchi Y., Philipsen S., Simpson R.J., Isobe T., Takahashi N. 2016. Chtop (Chromatin target of Prmt1) auto-regulates its expression level via intron retention and nonsense-mediated decay of its own mRNA. Nucleic Acids Res.44, 9847–9859.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yan Q., Weyn-Vanhentenryck S.M., Wu J., Sloan S.A., Zhang Y., Chen K., Wu J.Q., Barres B.A., Zhang C. 2015. Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators. Proc. Natl. Acad. Sci. U. S. A.112, 3445–3450.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Guan Q., Zheng W., Tang S., Liu X., Zinkel R.A., Tsui K.W., Yandell B.S., Culbertson M.R. 2006. Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast. PLoS Genet.2, e203.

    PubMed  PubMed Central  Google Scholar 

  98. Shvarts A.M., Komarova T.V., Skulachev M.V., Zvereva A.S., Dorokhov Yu.L., Atabekov I.G. 2007. mRNA stability in plants depends on the length of 3'-untranslated region. Biokhimiya. 72, 260–269.

    Google Scholar 

  99. Schell T., Kocher T., Wilm M., Seraphin B., Kulozik A.E., Hentze M.W. 2003. Complexes between the nonsense-mediated mRNA decay pathway factor human upf1 (up-frameshift protein 1) and essential nonsense-mediated mRNA decay factors in HeLa cells. Biochem. J.373, 775–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. He F., Jacobson A. 2015. Nonsense-mediated mRNA decay: Degradation of defective transcripts is only part of the story. Annu. Rev. Genet.49, 339–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Grimson A., O’Connor S., Newman C.L., Anderson P. 2004. SMG-1 is a phosphatidylinositol kinase-related protein kinase required for nonsense-mediated mRNA decay in Caenorhabditis elegans.Mol. Cell. Biol.24, 7483–7490.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Huntzinger E., Kashima I., Fauser M., Sauliere J., Izaurralde E. 2008. SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA.14, 2609–1267.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lykke-Andersen S., Chen Y., Ardal B.R., Lilje B., Waage J., Sandelin A., Jensen T.H. 2014. Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes. Genes Dev.28, 2498–2517.

    PubMed  PubMed Central  Google Scholar 

  104. Loh B., Jonas S., Izaurralde E. 2013. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev.27, 2125–2138.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nicholson P., Gkratsou A., Josi C., Colombo M., Muhlemann O. 2018. Dissecting the functions of SMG5, SMG7, and PNRC2 in nonsense-mediated mRNA decay of human cells. RNA.24, 557–573.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kurosaki T., Miyoshi K., Myers J.R., Maquat L.E. 2018. NMD-degradome sequencing reveals ribosome-bound intermediates with 3'-end non-templated nucleotides. Nat. Struct. Mol. Biol.25, 940–950.

    CAS  PubMed  Google Scholar 

  107. Brogna S., McLeod T., Petric M. 2016. The meaning of NMD: Translate or perish. Trends Genet.: TIG.32, 395–407.

    CAS  PubMed  Google Scholar 

  108. Chamieh H., Ballut L., Bonneau F., Le Hir H. 2008. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol.15, 85–93.

    CAS  PubMed  Google Scholar 

  109. Amrani N., Ganesan R., Kervestin S., Mangus D.A., Ghosh S., Jacobson A. 2004. A faux 3'-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature.432, 112–118.

    CAS  PubMed  Google Scholar 

  110. Kim Y.K., Furic L., Desgroseillers L., Maquat L.E. 2005. Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell.120, 195–208.

    CAS  PubMed  Google Scholar 

  111. Kim Y.K., Furic L., Parisien M., Major F., DesGroseillers L., Maquat L.E. 2007. Staufen1 regulates diverse classes of mammalian transcripts. EMBO J.26, 2670–2681.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gong C., Maquat L.E. 2011. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature.470, 284–288.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lucas B.A., Lavi E., Shiue L., Cho H., Katzman S., Miyoshi K., Siomi M.C., Carmel L., Ares M., Jr., Maquat L.E. 2018. Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. Proc. Natl. Acad. Sci. U. S. A.115, 968–973.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang J., Gong C., Maquat L.E. 2013. Control of myogenesis by rodent SINE-containing lncRNAs. Genes Dev.27, 793–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Park E., Gleghorn M.L., Maquat L.E. 2013. Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity. Proc. Natl. Acad. Sci. U. S. A.110, 405–412.

    CAS  PubMed  Google Scholar 

  116. Kim Y.K., Maquat L.E. 2019. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA.25, 407–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Inada T. 2013. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. Biochim. Biophys. Acta.1829, 634–642.

    CAS  PubMed  Google Scholar 

  118. Klauer A.A., van Hoof A. 2012. Degradation of mRNAs that lack a stop codon: A decade of nonstop progress. Wiley Interdisc. Rev. RNA.3, 649–660.

    CAS  Google Scholar 

  119. Tsuboi T., Kuroha K., Kudo K., Makino S., Inoue E., Kashima I., Inada T. 2012. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA. Mol. Cell.46, 518–529.

    CAS  PubMed  Google Scholar 

  120. Harigaya Y., Parker R. 2010. No-go decay: A quality control mechanism for RNA in translation. Wiley Interdisc. Rev. RNA.1, 132–141.

    CAS  Google Scholar 

  121. Passos D.O., Doma M.K., Shoemaker C.J., Muhlrad D., Green R., Weissman J., Hollien J., Parker R. 2009. Analysis of Dom34 and its function in no-go decay. Mol. Biol. Cell.20, 3025–3032.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Saito S., Hosoda N., Hoshino S. 2013. The Hbs1–Dom34 protein complex functions in non-stop mRNA decay in mammalian cells. J. Biol. Chem.288, 17832–17843.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Szadeczky-Kardoss I., Csorba T., Auber A., Schamberger A., Nyiko T., Taller J., Orban T.I., Burgyan J., Silhavy D. 2018. The nonstop decay and the RNA silencing systems operate cooperatively in plants. Nucleic Acids Res.46, 4632–4648.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Szadeczky-Kardoss I., Gal L., Auber A., Taller J., Silhavy D. 2018. The no-go decay system degrades plant mRNAs that contain a long A-stretch in the coding region. Plant Sci.: Internat. J. Exp. Plant Biol.275, 19–27.

    CAS  Google Scholar 

  125. Agrawal N., Dasaradhi P.V., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. 2003. RNA interference: Biology, mechanism, and applications. Microbiol. Mol. Biol. Rev.: MMBR.67, 657–685.

    CAS  PubMed  Google Scholar 

  126. Fang X., Qi Y. 2016. RNAi in plants: An argonaute-centered view. Plant Cell.28, 272–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Fischer S.E.J. 2015. RNA interference and microRNA-mediated silencing. Curr. Protocols Mol. Biol.112, 2611–2615.

    Google Scholar 

  128. Vilgelm A.E., Chumakov S.P., Prasolov V.S. 2006. RNA interference: Biology and prospects of application in biomedicine and biotechnology. Mol. Biol. (Moscow). 40 (3), 339–354.

    CAS  Google Scholar 

  129. Fatica A., Tollervey D. 2002. Making ribosomes. Curr. Opin. Cell Biol.14, 313–318.

    CAS  PubMed  Google Scholar 

  130. Briggs M.W., Burkard K.T., Butler J.S. 1998. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8S rRNA 3' end formation. J. Biol. Chem.273, 13255–13263.

    CAS  PubMed  Google Scholar 

  131. Wang M., Pestov D.G. 2011. 5'-end surveillance by Xrn2 acts as a shared mechanism for mammalian pre-rRNA maturation and decay. Nucleic Acids Res.39, 1811–1822.

    PubMed  Google Scholar 

  132. Dez C., Houseley J., Tollervey D. 2006. Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae.EMBO J.25, 1534–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. LaRiviere F.J., Cole S.E., Ferullo D.J., Moore M.J. 2006. A late-acting quality control process for mature eukaryotic rRNAs. Mol. Cell.24, 619–626.

    CAS  PubMed  Google Scholar 

  134. Cole S.E., LaRiviere F.J., Merrikh C.N., Moore M.J. 2009. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol. Cell.34, 440–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gudipati R.K., Xu Z., Lebreton A., Seraphin B., Steinmetz L.M., Jacquier A., Libri D. 2012. Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol. Cell.48, 409–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hamill S., Wolin S.L., Reinisch K.M. 2010. Structure and function of the polymerase core of TRAMP, a RNA surveillance complex. Proc. Natl. Acad. Sci. U. S. A.107, 15045–15050.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Alexandrov A., Chernyakov I., Gu W., Hiley S.L., Hughes T.R., Grayhack E.J., Phizicky E.M. 2006. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell.21, 87–96.

    CAS  PubMed  Google Scholar 

  138. Chernyakov I., Whipple J.M., Kotelawala L., Grayhack E.J., Phizicky E.M. 2008. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5'-3' exonucleases Rat1 and Xrn1. Genes Dev.22, 1369–1680.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Betat H., Morl M. 2015. The CCA-adding enzyme: A central scrutinizer in tRNA quality control. BioEssays: News Rev. Mol.,Cell. Dev. Biol.37, 975–982.

    CAS  Google Scholar 

  140. Wilusz J.E., Whipple J.M., Phizicky E.M., Sharp P.A. 2011. tRNAs marked with CCACCA are targeted for degradation. Science.334, 817–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Thompson D.M., Parker R. 2009. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae.J. Cell Biol.185, 43–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Allmang C., Kufel J., Chanfreau G., Mitchell P., Petfalski E., Tollervey D. 1999. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J.18, 5399–5410.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang L., Wan Y., Huang G., Wang D., Yu X., Huang G., Guo J. 2015. The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex. Sci. Repts.5, 13403.

    CAS  Google Scholar 

  144. Didychuk A.L., Butcher S.E., Brow D.A. 2018. The life of U6 small nuclear RNA, from cradle to grave. RNA.24, 437–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hrossova D., Sikorsky T., Potesil D., Bartosovic M., Pasulka J., Zdrahal Z., Stefl R., Vanacova S. 2015. RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3'-end extended forms of snRNAs. Nucleic Acids Res.43, 4236–4248.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hilcenko C., Simpson P.J., Finch A.J., Bowler F.R., Churcher M.J., Jin L., Packman L.C., Shlien A., Campbell P., Kirwan M., Dokal I., Warren A.J. 2013. Aberrant 3' oligoadenylation of spliceosomal U6 small nuclear RNA in poikiloderma with neutropenia. Blood.121, 1028–1038.

    CAS  PubMed  Google Scholar 

  147. Shukla S., Parker R. 2014. Quality control of assembly-defective U1 snRNAs by decapping and 5'-to-3' exonucleolytic digestion. Proc. Natl. Acad. Sci. U. S. A.111, E3277–E3786.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Labno A., Warkocki Z., Kulinski T., Krawczyk P.S., Bijata K., Tomecki R., Dziembowski A. 2016. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Res.44, 10437–10453.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. van Hoof A., Lennertz P., Parker R. 2000. Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol.20, 441–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Larochelle M., Lemay J.F., Bachand F. 2012. The THO complex cooperates with the nuclear RNA surveillance machinery to control small nucleolar RNA expression. Nucleic Acids Res.40, 10240–10253.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lubas M., Christensen M.S., Kristiansen M.S., Domanski M., Falkenby L.G., Lykke-Andersen S., Andersen J.S., Dziembowski A., Jensen T.H. 2011. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell.43, 624–637.

    CAS  PubMed  Google Scholar 

  152. Buscher M., Horos R., Hentze M.W. 2020. “High vault-age”: non-coding RNA control of autophagy. Open Biol.10, 190307.

    PubMed  PubMed Central  Google Scholar 

  153. Horos R., Buscher M., Sachse C., Hentze M.W. 2019. Vault RNA emerges as a regulator of selective autophagy. Autophagy.15, 1463–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu X., Zheng Q., Vrettos N., Maragkakis M., Alexiou P., Gregory B.D., Mourelatos Z. 2014. A microRNA precursor surveillance system in quality control of microRNA synthesis. Mol. Cell.55, 868–879.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Chang H.M., Triboulet R., Thornton J.E., Gregory R.I. 2013. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature.497, 244–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Gantier M.P., McCoy C.E., Rusinova I., Saulep D., Wang D., Xu D., Irving A.T., Behlke M.A., Hertzog P.J., Mackay F., Williams B.R. 2011. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res.39, 5692–5703.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sanei M., Chen X. 2015. Mechanisms of microRNA turnover. Curr. Opin. Plant Biol.27, 199–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang X., Wang Y., Dou Y., Chen L., Wang J., Jiang N., Guo C., Yao Q., Wang C., Liu L., Yu B., Zheng B., Chekanova J.A., Ma J., Ren G. 2018. Degradation of unmethylated miRNA/miRNA*s by a DEDDy-type 3' to 5' exoribonuclease Atrimmer 2 in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A.115, E6659–E6667.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kamminga L.M., Luteijn M.J., den Broeder M.J., Redl S., Kaaij L.J., Roovers E.F., Ladurner P., Berezikov E., Ketting R.F. 2010. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J.29, 3688–3700.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Szczepinska T., Kalisiak K., Tomecki R., Labno A., Borowski L.S., Kulinski T.M., Adamska D., Kosinska J., Dziembowski A. 2015. DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts. Genome Res.25, 1622–1633.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Tisseur M., Kwapisz M., Morillon A. 2011. Pervasive transcription: Lessons from yeast. Biochimie.93, 1889–1896.

    CAS  PubMed  Google Scholar 

  162. Thiebaut M., Kisseleva-Romanova E., Rougemaille M., Boulay J., Libri D. 2006. Transcription termination and nuclear degradation of cryptic unstable transcripts: A role for the Nrd1–Nab3 pathway in genome surveillance. Mol. Cell.23, 853–864.

    CAS  PubMed  Google Scholar 

  163. Thompson D.M., Parker R. 2007. Cytoplasmic decay of intergenic transcripts in Saccharomyces cerevisiae.Mol. Cell. Biol.27, 92–101.

    CAS  PubMed  Google Scholar 

  164. Belostotsky D. 2009. Exosome complex and pervasive transcription in eukaryotic genomes. Curr. Opin. Cell Biol.21, 352–358.

    CAS  PubMed  Google Scholar 

  165. Chekanova J.A., Gregory B.D., Reverdatto S.V., Chen H., Kumar R., Hooker T., Yazaki J., Li P., Skiba N., Peng Q., Alonso J., Brukhin V., Grossniklaus U., Ecker J.R., Belostotsky D.A. 2007. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell.131, 1340–1353.

    CAS  PubMed  Google Scholar 

  166. Davidson L., Francis L., Cordiner R.A., Eaton J.D., Estell C., Macias S., Caceres J.F., West S. 2019. Rapid depletion of DIS3, EXOSC10, or XRN2 reveals the immediate impact of exoribonucleolysis on nuclear RNA metabolism and transcriptional control. Cell Rept.26, 2779–2791 e5.

  167. Preker P., Nielsen J., Kammler S., Lykke-Andersen S., Christensen M.S., Mapendano C.K., Schierup M.H., Jensen T.H. 2008. RNA exosome depletion reveals transcription upstream of active human promoters. Science.322, 1851–1854.

    CAS  PubMed  Google Scholar 

  168. van Dijk E.L., Chen C.L., d’Aubenton-Carafa Y., Gourvennec S., Kwapisz M., Roche V., Bertrand C., Silvain M., Legoix-Ne P., Loeillet S., Nicolas A., Thermes C., Morillon A. 2011. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature.475, 114–117.

    CAS  PubMed  Google Scholar 

  169. Wery M., Descrimes M., Vogt N., Dallongeville A.S., Gautheret D., Morillon A. 2016. Nonsense-mediated decay restricts lncRNA levels in yeast unless blocked by double-stranded RNA structure. Mol. Cell.61, 379–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Muhlrad D., Parker R. 1999. Aberrant mRNAs with extended 3' UTRs are substrates for rapid degradation by mRNA surveillance. RNA.5, 1299–1307.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Ustianenko D., Pasulka J., Feketova Z., Bednarik L., Zigackova D., Fortova A., Zavolan M., Vanacova S. 2016. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J.35, 2179–2191.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-34-00247mol_a) and the Russian Science Foundation (project no. 19-14-00327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kramerov.

Ethics declarations

The authors declare that they have no conflict of interest. This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: 3′-UTR, 3′-untranslated region; AMD, AU-rich element-mediated decay; ARE, AU-rich element; CUT, cryptic unstable transcript; Dis3L2, Dis3-like 3′–5′ exoribonuclease; GMD, GU-rich element-mediated decay; GRE, GU-rich element; hTRAMP, human TRAMP; NEXT, nuclear exosome targeting complex; NGD, no-go decay; NMD, nonsense-mediated decay; NRD, nonfunctional rRNA decay; NSD, nonstop decay; PABP, poly(A)-binding protein; PAP, poly(A) polymerase; PPD, PABPN1 and PAPα/γ-mediated decay; PTC, premature termination codon; RTD, rapid tRNA decay; SINE, short interspersed element; siRNA, small interfering RNA; SKI, Superkiller (complex, a cytoplasmic exosome cofactor); SMD, Staufen1-mediated decay; TRAMP, Trf4/5–Air1/2–Mtr4 polyadenylation complex; snoRNA, small nucleolar RNA; snRNA, small nuclear RNA; ncRNA, non-coding RNA; pre-mRNA, precursor mRNA; pre-microRNA, precursor microRNA; pri-microRNA, primary microRNA transcript (pre-microRNA precursor); TUTase, terminal uridylyl transferase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatosyan, K.A., Ustyantsev, I.G. & Kramerov, D.A. RNA Degradation in Eukaryotic Cells. Mol Biol 54, 485–502 (2020). https://doi.org/10.1134/S0026893320040159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320040159

Keywords:

Navigation