Skip to main content
Log in

Expanding the Genetic Code: Unnatural Base Pairs in Biological Systems

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The genetic code is considered to use five nucleic bases (adenine, guanine, cytosine, thymine and uracil), which form two pairs for encoding information in DNA and two pairs for encoding information in RNA. Nevertheless, in recent years several artificial base pairs have been developed in attempts to expand the genetic code. Employment of these additional base pairs increases the information capacity and variety of DNA sequences, and provides a platform for the site-specific, enzymatic incorporation of extra functional components into DNA and RNA. As a result, of the development of such expanded systems, many artificial base pairs have been synthesized and tested under various conditions. Following many stages of enhancement, unnatural base pairs have been modified to eliminate their weak points, qualifying them for specific research needs. Moreover, the first attempts to create a semi-synthetic organism containing DNA with unnatural base pairs seem to have been successful. This further extends the possible applications of these kinds of pairs. Herein, we describe the most significant qualities of unnatural base pairs and their actual applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Rich A. 1962. Problems of evolution and biochemical information transfer. In Horizons in Biochemistry. Eds. Kasha M., Pullman B. New York: Academic, pp. 103–126.

    Google Scholar 

  2. Switzer C., Moroney S.E., Benner S.A. 1989. Enzymatic incorporation of a new base pair into DNA and RNA. J. Am. Chem. Soc.111, 8322–8323.

    CAS  Google Scholar 

  3. Piccirilli J.A., Krauch T., Moroney S.E., Benner S.A. 1990. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature. 343, 33–37.

    CAS  PubMed  Google Scholar 

  4. Sismour A.M., Benner S.A. 2005. The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res.33, 5640–5646.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Switzer C.Y., Moroney S.E., Benner S.A. 1993. Enzymatic recognition of the base pair between isocytidine and isoguanosine. Biochemistry. 32, 10489–10496.

    CAS  PubMed  Google Scholar 

  6. Horlacher J., Hottiger M., Podust V.N., Hubscher U., Benner S.A. 2006. Recognition by viral and cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding patterns. Proc. Natl. Acad. Sci. U. S. A.92, 6329–6333.

    Google Scholar 

  7. Benner S.A. 2004. Understanding nucleic acids using synthetic chemistry. Acc. Chem. Res.37, 784–797.

    CAS  PubMed  Google Scholar 

  8. Martinot T.A., Benner S.A. 2004. Artificial genetic systems: exploiting the ‘aromaticity’ formalism to improve the tautomeric ratio for isoguanosine derivatives. J. Org. Chem.69, 3972–3975.

    CAS  PubMed  Google Scholar 

  9. Yang Z., Hutter D., Sheng P., Sismour A.M., Benner S.A. 2006. Artificially expanded genetic information system: A new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res.34, 6095–6101.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Z., Sismour A.M., Sheng P., Puskar N.L., Benner S.A. 2007. Enzymatic incorporation of a third nucleobase pair. Nucleic Acids Res.35, 4238–4249.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoshika S., Leal N.A., Kim M., Kim M., Karalkar N.B., Kim H., Bates A.M., Watkins N.E., Jr., SantaLucia H.A., Meyer A.J., DasGupta S., Piccirilli J.A., Ellington A.D., SantaLucia J. Jr, Georgiadis M.M., Benner S.A. 2019. Hachimoji DNA and RNA: system with eight building blocks. Science. 363, 884–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohtsuki T., Kimoto M., Ishikawa M., Mitsui T., Hirao I., Yokoyama S. 2001. Unnatural base pairs for specific transcription. Proc. Natl. Acad. Sci. U. S. A.98, 4922–4925.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishikawa M., Hirao I., Yokoyama S. 2000. Synthesis of 3-(2-deoxy-β-D-ribofuranosyl)pyridin-2-one and 2-amino-6-(N,N-dimethylamino)-9-(2-deoxy-β-D-ribofuranosyl)purine derivatives for an unnatural base pair. Tetrahedron Lett.41, 3931–3934.

    CAS  Google Scholar 

  14. Fujiwara T., Kimoto M., Sugiyama H., Hirao I., Yokoyama S. 2001. Synthesis of 6-(2-thienyl)purine nucleoside derivatives that form unnatural base pairs with pyridin-2-one nucleosides. Bioorg. Med. Chem. Lett.11, 2221–2223.

    CAS  PubMed  Google Scholar 

  15. Hirao I., Ohtsuki T., Fujiwara T., Mitsui T., Yokogawa T., Okuni T., Nakayama H., Takio K., Yabuki T., Kigawa T., Kodama K., Yokogawa T., Nishikawa K., Yokoyama S. 2002. An unnatural base pair for incorporating amino acid analogs into proteins. Nat. Biotechnol.20, 177–182.

    CAS  PubMed  Google Scholar 

  16. Mitsui T., Kimoto M., Harada Y., Yokoyama S., Hirao I. 2005. An efficient unnatural base pair for a base-pair-expanded transcription system. J. Am. Chem. Soc.127, 8652–8658.

    CAS  PubMed  Google Scholar 

  17. Johar Z., Zahn A., Leumann C.J., Jaun B. 2008. Solution structure of a DNA duplex containing a biphenyl pair. Chemistry.14, 1080–1086.

    CAS  PubMed  Google Scholar 

  18. Morales J.C., Kool E.T. 1998. Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat. Struct. Biol.5, 950–954.

    CAS  PubMed  Google Scholar 

  19. Leconte A.M., Hwang G.T., Matsuda S., Capek P., Hari Y., Romesberg F.E. 2008. Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. J. Am. Chem. Soc.130, 2336–2343.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Seo Y.J., Hwang G.T., Ordoukhanian P., Romesberg F.E. 2009. Optimization of an unnatural base pair toward natural-like replication. J. Am. Chem. Soc.131, 3246–3252.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsuda S., Fillo J.D., Henry A.A., Rai P., Wilkens S.J., Dwyer T.J., Geierstanger B.H., Wemmer D.E., Schultz P.G., Spraggon G., Romesberg F.E. 2007. Efforts toward expansion of the genetic alphabet: Structure and replication of unnatural base pairs. J. Am. Chem. Soc.129, 10466–10473.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Seo Y.J., Romesberg F.E. 2009. Major groove derivatization of an unnatural base pair. ChemBioChem. 10, 2394–2400.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitsui T., Kitamura A., Kimoto M., To T., Sato A., Hirao I., YokoyamaS. 2003. An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazo[(4,5)-b]pyridine. J. Am. Chem. Soc.125, 5298–5307.

    CAS  PubMed  Google Scholar 

  24. Kimoto M., Kawai R., Mitsui T., Yokoyama S., Hirao I. 2009. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res.37 (2), e14. https://doi.org/10.1093/nar/gkn956

    Article  CAS  PubMed  Google Scholar 

  25. Hirao I., Mitsui T., Kimoto M., Yokoyama S. 2007. Development of an unnatural base pair for efficient PCR amplification. Nucl. Acids Symp. Ser. (Oxf.). 51, 9–10.

    Google Scholar 

  26. Hirao I., Kimoto M., Mitsui T., Fujiwara T., Kawai R., Sato A., Harada Y., Yokoyama S. 2006. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat. Methods. 3, 729–735.

    CAS  PubMed  Google Scholar 

  27. Yamashige R., Kimoto M., Takezawa Y., Sato A., Mitsui T., Yokoyama S., Hirao I. 2012. Highly specific unnatural base pair systems as a third base pair for PCR amplification. Nucleic Acids Res.40, 2793–2806.

    CAS  PubMed  Google Scholar 

  28. Collins M.L., Irvine B., Tyner D., Fine E., Zayati C., Chang C.A., Horn T., Ahle D., Detmer J., Shen L.P., Kolberg J., Bushnell S., Urdea M.S., Ho D.D. 1997. A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/mL. Nucleic Acids Res.25, 2979–2984.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tyagi S., Kramer F.R. 1996. Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.

    CAS  PubMed  Google Scholar 

  30. Kimoto M., Mitsui T., Yokoyama S., Hirao I. 2010. A unique fluorescent base analogue for the expansion of the genetic alphabet. J. Am. Chem. Soc.132, 4988–4989.

    CAS  PubMed  Google Scholar 

  31. Kimoto M., Mitsui T., Yamashige R., Sato A., Yokoyama S., Hirao I. 2010. A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology. J. Am. Chem. Soc.132, 15418–15426.

    CAS  PubMed  Google Scholar 

  32. Someya T., Ando A., Kimoto M., Hirao I. 2015. Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry. Nucleic Acids Res.43, 6665–6676.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamashige R., Kimoto M., Okumura R., Hirao I. 2018. Visual detection of amplified DNA by polymerase chain reaction using a genetic alphabet expansion system. J. Am. Chem. Soc.140, 14038–14041.

    CAS  PubMed  Google Scholar 

  34. Sheng P., Yang Z., Kim Y., Wu Y., Tan W., Benner S.A. 2008. Design of a novel molecular beacon: Modification of the stem with artificially genetic alphabet. Chem. Commun.41, 5128–5130.

    Google Scholar 

  35. Sherrill C.B., Marshall D.J., Moser M.J., Larsen C.A., Daudé-Snow L., Prudent J.R. 2004. Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence. J. Am. Chem. Soc.126, 4550–4556.

    CAS  PubMed  Google Scholar 

  36. Moser M.J., Christensen D.R., Norwood D., Prudent J.R. 2006. Multiplexed detection of anthrax-related toxin genes. J. Mol. Diagn. 8, 89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson S.C., Marshall D.J., Harms G., Miller C.M., Sherrill C.B., Beaty E.L., Lederer S.A., Roesch E.B., Madsen G., Hoffman G.L., Laessig R.H., Kopish G.J., Baker M.W., Benner S.A., Farrell P.M., Prudent J.R. 2004. Multiplexed genetic analysis using an expanded genetic alphabet. Clin. Chem.50, 2019–2027.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Riedl J., Ding Y., Fleming A.M., Burrows C.J. 2015. Identification of DNA lesions using a third base pair for amplification and nanopore sequencing. Nat. Commun.6, 1–11.

    Google Scholar 

  39. Malyshev D.A., Romesberg F.E. 2015. The expanded genetic alphabet. Angew. Chemie Int. Ed.54, 11930–11944.

    CAS  Google Scholar 

  40. Yan H., Tsai M.D. 1999. Nucleoside monophosphate kinases: Structure, mechanism, and substrate specificity. Adv. Enzymol. Relat. Areas Mol. Biol. 73, 103–104.

    CAS  PubMed  Google Scholar 

  41. Wu Y., Fa M., Tae E.L., Schultz P.G., Romesberg F.E. 2002. Enzymatic phosphorylation of unnatural nucleosides. J. Am. Chem. Soc.124, 14626–14630.

    CAS  PubMed  Google Scholar 

  42. Zhang Y., Ptacin J.L., Fischer E.C., Aerni H.R., Caffaro C.E., San Jose K., Feldman A.W., Turner C.R., Romesberg F.E. 2017. A semi-synthetic organism that stores and retrieves increased genetic information. Nature. 551, 644–647.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Malyshev D.A., Dhami K., Lavergne T., Chen T., Dai N., Foster J.M., Corrêa I.R., Romesberg F.E. 2014. A semi-synthetic organism with an expanded genetic alphabet. Nature.509, 385–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Feldman A.W., Dien V.T., Karadeema R.J., Fischer E.C., You Y., Anderson B.A., Krishnamurthy R., Chen J.S., Li L., Romesberg F.E. 2019. Optimization of replication, transcription, and translation in a semi-synthetic organism. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.9b02075

  45. Feldman A.W., Romesberg F.E. 2017. In vivo structure-activity relationships and optimization of an unnatural base pair for replication in a semi-synthetic organism. J. Am. Chem. Soc.139, 11427–11433.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank our co-workers and members of the Alkalaeva lab for participating in discussions about the topics covered in this essay.

Funding

This work was supported by the Russian Foundation for Basic Research (RFBR) (research project grant number 18-29-08044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Z. Alkalaeva.

Ethics declarations

The authors declare no conflict of interest.

This article does not contain any research involving humans or animals as subjects of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukba, S.A., Vlasov, P.K., Kolosov, P.M. et al. Expanding the Genetic Code: Unnatural Base Pairs in Biological Systems. Mol Biol 54, 475–484 (2020). https://doi.org/10.1134/S0026893320040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320040111

Keywords:

Navigation