Skip to main content
Log in

Exogenous HSP70 and Signaling Pathways Involved in the Inhibition of LPS-Induced Neurotoxicity of Neuroblastoma Cells

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Neuroinflammation plays a key role in the pathogenesis of neurodegenerative diseases. Microglial cells are the main immune cells of the central nervous system. On exposure to lipopolysaccharides (LPS, components of the cell wall of Gram-negative enterobacteria), microglia is activated to produce reactive oxygen species (ROS), cytokines, and inflammatory mediators, which may cause neuron death. Exogenous recombinant human heat shock protein 70 (HSP70) was tested for effect on the activation of human microglial and neuroblastoma cells in response to LPS from Escherichia coli. Experiments included cell cultivation separately and transferring the conditioned medium from A-172 microglial cells to SK-N-SH neuroblastoma cells to simulate the effect of microglia treated with LPS and/or HSP70. The levels of ROS, TNFα, and apoptosis in LPS-treated cells were estimated in the presence or absence of HSP70. HSP70 was found to reduce the LPS-induced ROS generation, TNFα production, apoptosis, and necrosis, in both separate cell cultures and neuroblastoma cells grown in the conditioned medium from microglial cells. Signaling pathways involving protein kinases p38MAPK, JNK, and PI3K were demonstrated to play an important role in HSP70-mediated protection of microglial and neuroblastoma cells from LPS-induced apoptosis and ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Catorce M.N., Gevorkian G. 2016. LPS-induced murine neuroinflammation model: Main features and suitability for pre-clinical assessment of nutraceuticals. Curr. Neuropharmacol. 14, 155–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muhammad T., Ali T., Ikram M., Khan A., Alam S.I., Kim M. 2018. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J. Neuroimmun. Pharmacol. 14 (2), 278–294. https://doi.org/10.1007/s11481-018-9824-3

    Article  Google Scholar 

  3. DeFrancesco-Lisowitz A., Lindborg J., Niemi J., Zigmond R. 2015. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience.302, 174–203.

    Article  CAS  PubMed  Google Scholar 

  4. Pintado C., Gavilán M.P., Gavilán E., García-Cuervo L., Gutiérrez A., Vitorica J., Castaño A., Ríos R.M., Ruano D. 2012. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J. Neuroinflamm. 9, 87.

    Article  CAS  Google Scholar 

  5. Barron H., Hafizi S., Andreazza A.C., Mizrahi R. 2017. Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int. J. Mol. Sci. 18 (3), 651.

    Article  PubMed Central  CAS  Google Scholar 

  6. Pretorius E., Bester J., Page M., Kell D. 2018. The potential of LPS-binding protein to reverse amyloid formation in plasma fibrin of individuals with Alzheimer-type dementia. Front. Aging Neurosci. 10, 257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Prinz M., Priller J. 2014. Microglia and brain macrophages in the molecular age: Origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312.

    Article  CAS  PubMed  Google Scholar 

  8. Lannes N., Eppler E., Etemad S., Yotovski P., Filgueira L. 2017. Microglia at center stage: A comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget. 8 (69), 114393–114413.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Graeber M., Streit W. 2010. Microglia: Biology and pathology. Acta Neuropathol. 119, 89–105.

    Article  PubMed  Google Scholar 

  10. More S., Kumar H., Kim I., Koppulla S., Kim B., Choi D. 2013. Strategic selection of neuroinflammatory models in Parkinson’s disease: Evidence from experimental studies. CNS Neurol. Disord. Drug Targets. 12, 680–697.

    Article  CAS  PubMed  Google Scholar 

  11. Qin L., Liu Y., Hong J., Crews F. 2013. NADPH oxidase and aging drive microglial activation, oxidative stress and dopaminergic neurodegeneration following systemic LPS administration. Glia.61, 855–868.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang G., Zhang J., Hu X., Zhang L., Mao L., Jiang X., Liou A.K., Leak R.K., Gao Y., Chen J. 2013. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab. 33, 1864–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loane D., Kumar A., Stoica B., Cabatbat R., Faden A. 2014. Progressive neurodegeneration after experimental brain trauma: Association with chronic microglial activation. J. Neuropathol. Exp. Neurol. 73, 14–29.

    Article  CAS  PubMed  Google Scholar 

  14. Kim S., Kim H. 2017. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 50 (2), 55–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuzmich N., Sivak K., Chubarev V., Porozov Y., Savateeva-Lyubimova T., Peri F. 2017. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel). 5 (4), pii: E34.

    Article  PubMed  CAS  Google Scholar 

  16. Muhammad T., Ikram M., Ullah R., Rehman S., Kim M. 2019. Hesperetin, a citrus flavonoid, attenuates lps-induced neuroinflammation, apoptosisand memory impairments by modulating TLR4/NF-κB signaling. Nutrients. 11 (3), pii: E648.

    Article  PubMed  CAS  Google Scholar 

  17. Qu B., Jia Y., Liu Y, Wang H., Ren G., Wang H. 2015. The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: A literature review. Cell Stress Chaperones. 20 (6), 885–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Radons J. 2016. The human HSP70 family of chaperones: Where do we stand? Cell Stress Chaperones. 21 (3), 379–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dahiya V., Buchner J. 2019. Functional principles and regulation of molecular chaperones. Adv. Protein Chem. Struct. Biol. 114, 1–60.

    Article  PubMed  Google Scholar 

  20. Yu W., Cao S., Zang C., Wang L., Yang H., Bao X., Zhang D. 2018. Heat shock protein 70 suppresses neuroinflammation induced by α-synuclein in astrocytes. Mol. Cell Neurosci. 86, 58–64.

    Article  CAS  PubMed  Google Scholar 

  21. Streicher J. 2019. The role of heat shock proteins in regulating receptor signal transduction. Mol. Pharmacol.95 (5), 468–474.

    Article  CAS  PubMed  Google Scholar 

  22. Pockley A., Henderson B. 2018. Extracellular cell stress (heat shock) proteins-immune responses and disease: An overview. Philos. Trans. R. Soc. Lond. B. Biol. Sci.373 (1738). pii: 20160522.

    Article  CAS  Google Scholar 

  23. Rozhkova E., Yurinskaya M., Zatsepina O., Garbuz D., Surkov S., Murashev A., Ostrov V., Margulis B., Evgen’ev M., Vinokurov M. 2010. Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann. N. Y. Acad. Sci. 1197, 94–107.

    Article  CAS  PubMed  Google Scholar 

  24. Yurinskaya M., Kochetkova O., Shabarchina L., Antonova O., Suslikov A., Evgen’ev M., Vinokurov M. 2017. Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes. Cell Stress Chaperones. 22 (1), 163–171.

    Article  CAS  PubMed  Google Scholar 

  25. Yurinskaya M., Mitkevich V., Kozin S., Evgen’ev M., Makarov A., Vinokurov M. 2015. HSP70 protects human neuroblastoma cells from apoptosis and oxidative stress induced by amyloid peptide isoAsp7-Aβ(1-42). Cell. Death Dis. 19 (6), e1977.

    Article  CAS  Google Scholar 

  26. Evgen'ev M., Krasnov G., Nesterova I., Garbuz D., Karpov V., Morozov A., Snezhkina A., Samokhin A., Sergeev A., Kulikov A., Bobkova N. 2017. Molecular mechanisms underlying neuroprotective effect of intranasal administration of human Hsp70 in mouse model of Alzheimer’s disease. J. Alzheimers Dis. 59 (4), 1415–1426.

    Article  CAS  PubMed  Google Scholar 

  27. Pfister H., Hennet T., Jungi T. 1992. Lipopolysaccharide synergizes with tumour necrosis factor-alpha in cytotoxicity assays. Immunology. 77 (3), 473–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X., Hu D., Zhang L., Lian G., Zhao S., Wang C., Yin J., Wu C., Yang J. 2014. Gomisin A inhibits lipopolysaccharide-induced inflammatory responses in N9 microglia via blocking the NF-κB/MAPKs pathway. Food Chem. Toxicol.63, 119–127.

    Article  CAS  PubMed  Google Scholar 

  29. Yin L., Li W., Chu Y., Li L. 2011. ERK pathway activation is required for amyloid-β(1-40)(-)induced neurotoxicity of THP-1 human monocytes towards SK-N-SH neuroblastoma. Brain Res. 1378, 9–17.

    Article  CAS  PubMed  Google Scholar 

  30. Yao L., Ye Y., Mao H., Lu F., He X., Lu G., Zhang S. 2018. MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson’s disease. J. Neuroinflammation. 15 (1), 13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Giraldo E., Martin-Cordero L., Garcia J., Gerhmann M., Multhoff G., Ortega E. 2010. Exercise-induced extracellular 72 kDa heat shock protein (Hsp72) stimulates neutrophil phagocytic and fungicidal capacities via TLR-2. Eur. J. Appl. Physiol. 108 (2), 217–225.

    Article  CAS  PubMed  Google Scholar 

  32. Xie Z., Smith C., Van Eldik L. 2004. Activated glia induces neuron death via MAP kinase signaling pathways involving JNK and p38. Glia.45 (2), 170–179.

    Article  PubMed  Google Scholar 

  33. Xiang W., Chao Z., Feng D. 2015. Role of Toll-like receptor/myd88 signaling in neurodegenerative diseases. Rev. Neurosci. 26 (4), 407–414

    Article  CAS  PubMed  Google Scholar 

  34. Hassan F., Islam S., Tumurkhuu G., Naiki Y., Koide N., Mori I., Yoshida T., Yokochi T. 2006. Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide. BMC Cancer. 6, 281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Trotta T., Porro C., Calvello R., Panaro M. 2014. Biological role of toll-like receptor-4 in the brain. J. Neuroimmunol. 268 (1–2), 1–12.

    Article  CAS  PubMed  Google Scholar 

  36. Cui Y., Wang Y., Zhao D., Feng X., Zhang L., Liu C. 2018. Loganin prevents BV-2 microglia cells from Aβ1-42-induced inflammation via regulating TLR4/ TRAF6/NF-κB axis. Cell. Biol. Int.42 (12), 1632–1642.

    Article  CAS  PubMed  Google Scholar 

  37. Calvo-Rodríguez M., de la Fuente C., García-Durillo M., García-Rodríguez C., Villalobos C., Núñez L. 2017. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+responses, and neuron cell death in cultured rat hippocampal neurons. J. Neuroinflamm.14 (1), 24.

    Article  CAS  Google Scholar 

  38. Gibbons H., Dragunow M. 2006. Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res. 1084 (1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  39. Asehnoune K., Strassheim D., Mitra S., Kim J., Abraham E. 2004. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J. Immunol. 172 (4), 2522–2529.

    Article  CAS  PubMed  Google Scholar 

  40. Park H., Jung H., Park E., Kim J., Lee W., Bae Y. 2004. Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol.173 (6), 3589–3593.

    Article  CAS  PubMed  Google Scholar 

  41. Nadeau S., Rivest S. 2000. Role of microglial-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor kappa B activity in the brain during endotoxemia. J. Neurosci. 20, 3456–3468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yurinskaya M.M., Mit’kevich V.A., Barykin E.P., Garbuz D.G., Evgen’ev M.B., Makarov A.A., Vinokurov M.G. 2015. Heat-shock protein HSP70 protects neuroblastoma cells SK-N-SH from the neurotoxic effects of hydrogen peroxide and the β-amyloid peptide. Mol. Biol. (Moscow). 49 (6), 924–927.

    Article  CAS  Google Scholar 

  43. Asea A., Rehli M., Kabingu E., Boch J., Bare O., Auron P., Stevenson M., Calderwood S. 2002. Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028–15034.

    Article  CAS  PubMed  Google Scholar 

  44. Yurinskaya M., Zatsepina O., Vinokurov M., Bobkova N., Garbuz D., Morozov A., Kulikova D., Mitkevich V., Makarov A., Funikov S., Evgen’ev M.. 2015. The fate of exogenous human HSP70 introduced into animal cells by different means. Curr. Drug Deliv.12 (5), 524–532.

    Article  CAS  PubMed  Google Scholar 

  45. Kacimi R., Yenari M. 2015. Pharmacologic heat shock protein 70 induction confers cytoprotection against inflammation in gliovascular cells. Glia.63 (7), 1200–1212.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Subedi L., Ji E., Shin D., Jin J., Yeo J., Kim S. 2017. Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro.Nutrients. 9 (3), 207.

    Article  PubMed Central  CAS  Google Scholar 

  47. Rahimifard M., Maqbool F., Moeini-Nodeh S., Niaz K., Abdollahi M., Braidy N., Nabavi S., Nabavi S. 2017. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res. Rev. 36, 11–19.

    Article  CAS  PubMed  Google Scholar 

  48. Hao Y., Feng Y., Li J., Gu X. 2018. Role of MAPKs in Hsp70’s protection against heat stress-induced injury in rat small intestine. Biomed. Res. Int.12, 1571406.

    Google Scholar 

  49. Gourgou E., Aggeli I., Beis I., Gaitanaki C. 2010. Hyperthermia-induced Hsp70 and MT20 transcriptional upregulation are mediated by p38-MAPK and JNKs in Mytilus galloprovincialis (Lamarck): A pro-survival response. J. Exp. Biol. 213 (2), 347–357.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-04-00109). Isolation and purification of recombinant human HSP70 were supported by the Russian Science Foundation (project no. 19-14-00167) (D.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Evgen’ev.

Ethics declarations

This article does not contain any studies involving animals or human subjects performed by any of the authors.

Conflict of interests. The authors declare that they have no conflict of interest.

Additional information

Translated by T. Tkacheva

Abbreviations: HSP70, heat shock protein, 70 kDa; LPS, lipopolysaccharide; ROS, reactive oxygen species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurinskaya, M.M., Garbuz, D.G., Evgen’ev, M.B. et al. Exogenous HSP70 and Signaling Pathways Involved in the Inhibition of LPS-Induced Neurotoxicity of Neuroblastoma Cells. Mol Biol 54, 111–118 (2020). https://doi.org/10.1134/S0026893320010161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320010161

Keywords:

Navigation