Skip to main content
Log in

The Role of Mutant RNA in the Pathogenesis of Huntington’s Disease and Other Polyglutamine Diseases

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Polyglutamine diseases are rare, inherited neurodegenerative pathologies that arise as a result of expansion of trinucleotide CAG repeats in the coding segment of certain genes. This expansion leads to the appearance of mRNA with abnormally long repetitive CAG triplets (mCAG-RNA) and proteins with polyglutamine (PolyQ) tracts in the cells, which is why these pathologies are commonly termed polyglutamine diseases, or PolyQ diseases. To date, nine PolyQ diseases have been described: Huntington’s disease, dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and six different types of spinocerebellar ataxia (SCA 1, 2, 3, 6, 7, and 17). PolyQ diseases lead to serious, constantly progressing dysfunctions of the nervous and/or muscular systems, and there currently exists no efficacious therapy for any of them. Recent studies have convincingly shown that mCAG-RNA can actively participate in the pathological process during the development of PolyQ diseases. Mutant RNA is involved in a wide range of molecular mechanisms, ultimately leading to disruption of the functions of transcription, splicing, translation, cytosol structure, RNA transport from the nucleus to the cytoplasm, and, finally, to neurodegeneration. This review discusses the involvement of mutant mCAG-RNA in neurodegenerative processes in PolyQ diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Aronin N., DiFiglia M. 2014. Huntingtin-lowering strategies in Huntington’s disease: Antisense oligonucleotides, small RNAs, and gene editing. Movement Disorders.29, 1455‒1461.

    Article  CAS  PubMed  Google Scholar 

  2. Hu J., Matsui M., Gagnon K.T., Schwartz J.C., Gabillet S., Arar K., Wu J., Bezprozvanny I., Corey D.R. 2009. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat. Biotechnol.27, 478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu J., Liu J., Corey D.R. 2010. Allele-selective inhibition of huntingtin expression by switching to an miRNA-like RNAi mechanism. Chem. Biol.17, 1183‒1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharp A.H., Loev S.J., Schilling G., Li S.H., Li X.J., Bao J., Wagster M.V., Kotzuk J.A., Steiner J.P., Lo A., Hedreen J. 1995. Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron. 14, 1065‒1074.

    Article  CAS  PubMed  Google Scholar 

  5. Illarioshkin S.N., Klyushnikov S.A., Seliverstov Yu.A. 2018. Bolezn’ Gentingtona (Huntington’s Disease). Moscow: Atmosfera.

  6. Nasir J., Floresco S.B., O’Kusky J.R., Diewert V.M., Richman J.M., Zeisler J., Borowski A., Marth J.D., Phillips A.G., Hayden M.R. 1995. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell. 81, 811‒823.

    Article  CAS  PubMed  Google Scholar 

  7. Wexler N.S., Young A.B., Tanzi R.E., Travers H., Starosta-Rubinstein S., Penney J.B., Snodgrass S.R., Shoulson I., Gomez F., Ramos Arroyo M.A., Penchaszadeh G.K. 1987. Homozygotes for Huntington’s disease. Nature. 326, 194.

    Article  CAS  PubMed  Google Scholar 

  8. Myers R.H., Leavitt J.L., Farrer L.A., Jagadeesh J., McFarlane H., Mastromauro C.A., Mark R.J., Gusella J.F. 1989. Homozygote for Huntington disease. Am. J. Hum. Genet.45, 615.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Evers M.M., Schut M.H., Pepers B.A., Atalar M., van Belzen M.J., Faull R.L., Roos R.A., van Roon-Mom W.M. 2015. Making (anti-)sense out of huntingtin levels in Huntington disease. Mol. Neurodegener.10, 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shin A., Shin B., Shin J.W., Kim K.H., Atwal R.S., Hope J.M., Gillis T., Leszyk J.D., Shaffer S.A., Lee R., Kwak S., MacDonald M.E., Gusella J.F., Seong I.S., Lee J.M. 2017. Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels. Hum. Mol. Genet.26, 1258‒1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neueder A., Landles C., Ghosh R., Howland D., Myers R.H., Faull R.L., Tabrizi S.J., Bates G.P. 2017. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci. Rept.7, 1307.

    Article  CAS  Google Scholar 

  12. Sathasivam K., Neueder A., Gipson T.A., Landles C., Benjamin A.C., Bondulich M.K., Smith D.L., Faull R.L., Roos R.A., Howland D., Detloff P.J., Housman D.E., Bates G.P. 2013. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. U. S. A.110, 2366‒2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neueder A., Dumas A.A., Benjamin A.C., Bates G.P. 2018. Regulatory mechanisms of incomplete huntingtin mRNA splicing. Nat. Commun.9, 3955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Romo L., Ashar-Patel A., Pfister E., Aronin N. 2017. Alterations in mRNA 3′ UTR isoform abundance accompany gene expression changes in human Huntington’s disease brains. Cell Rept.20, 3057‒3070.

    Article  CAS  Google Scholar 

  15. Romo L., Mohn E.S., Aronin N. 2018. A fresh look at huntingtin mRNA processing in Huntington’s disease. J. Huntington’s Dis.7, 101‒108.

    Article  CAS  Google Scholar 

  16. Xu H., An J.J., Xu B. 2017. Distinct cellular toxicity of two mutant huntingtin mRNA variants due to translation regulation. PLoS One.12, e0177610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Khalil A.M., Faghihi M.A., Modarresi F., Brothers S.P., Wahlestedt C. 2008. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS One.3, e1486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Daughters R.S., Tuttle D.L., Gao W., Ikeda Y., Moseley M.L., Ebner T.J., Swanson M.S., Ranum L.P. 2009. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genetics. 5, e1000600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chung D.W., Rudnicki D.D., Yu L., Margolis R.L. 2011. A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Hum. Mol. Genet.20, 3467‒3477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li P.P., Sun X., Xia G., Arbez N., Paul S., Zhu S., Peng H.B., Ross C.A., Koeppen A.H., Margolis R.L., Pulst S.M., Ashizawa T., Rudnicki D.D. 2016. ATXN2-AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann. Neurol.80, 600‒615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Mezer M., Wojciechowska M., Napierala M., Sobczak K., Krzyzosiak W.J. 2011. Mutant CAG repeats of huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Res.39, 3852‒3863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wojciechowska M., Krzyzosiak W.J. 2011. Cellular toxicity of expanded RNA repeats: Focus on RNA foci. Hum. Mol. Genet.20, 3811‒3821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Urbanek M.O., Krzyzosiak W.J. 2016. RNA FISH for detecting expanded repeats in human diseases. Methods.98, 115‒123.

    Article  CAS  PubMed  Google Scholar 

  24. Taneja K.L., McCurrach M., Schalling M., Housman D., Singer R.H. 1995. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell. Biol.128, 995‒1002.

    Article  CAS  PubMed  Google Scholar 

  25. Wheeler T.M., Thornton C.A. 2007. Myotonic dystrophy: RNA-mediated muscle disease. Curr. Opin. Neurol.20, 572‒576.

    Article  CAS  PubMed  Google Scholar 

  26. Mooers B.H., Logue J.S., Berglund J.A. 2005. The structural basis of myotonic dystrophy from the crystal structure of CUG repeats. Proc. Natl. Acad. Sci. U. S. A.102, 16626‒16631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan Y., Compton S.A., Sobczak K., Stenberg M.G., Thornton C.A., Griffith J.D., Swanson M.S. 2007. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res.35, 5474‒5486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakamori M., Sobczak K., Puwanant A., Welle S., Eichinger K., Pandya S., Dekdebrun J., Heatwole C.R., McDermott M.P., Chen T., Cline M., Tawil R., Osborne R.J., Wheeler T.M., Swanson M.S., et al. 2013. Splicing biomarkers of disease severity in myotonic dystrophy. Ann. Neurol.74, 862‒872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Botta A., Vallo L., Rinaldi F., Bonifazi E., Amati F., Biancolella M., Gambardella S., Mancinelli E., Angelini C., Meola G., Novelli G. 2006. Gene expression analysis in myotonic dystrophy: Indications for a common molecular pathogenic pathway in DM1 and DM2. Gene expression, J. Liver Res.13, 339‒351.

    CAS  Google Scholar 

  30. Salvatori S., Furlan S., Fanin M., Picard A., Pastorello E., Romeo V., Trevisan C.P., Angelini C. 2009. Comparative transcriptional and biochemical studies in muscle of myotonic dystrophies (DM1 and DM2). Neurol. Sci.30, 185‒192.

    Article  PubMed  Google Scholar 

  31. Querido E., Gallardo F., Beaudoin M., Ménard C., Chartrand P. 2011. Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. J. Cell. Sci.124, 1703‒1714.

    Article  CAS  PubMed  Google Scholar 

  32. Konieczny P., Stepniak-Konieczna E., Sobczak K. 2014. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res.42, 10873‒10887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sobczak K., Wheeler T.M., Wang W., Thornton C.A. 2013. RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy. Mol. Therapy.21, 380‒387.

    Article  CAS  Google Scholar 

  34. Jauvin D., Chrétien J., Pandey S. K., Martineau L., Revillod L., Bassez G., Thornton C.A. 2017. Targeting DMPK with antisense oligonucleotide improves muscle strength in myotonic dystrophy type 1 mice. Mol. Therapy–Nucl. Acids.7, 465‒474.

    Article  CAS  Google Scholar 

  35. Rzuczek S.G., Colgan L.A., Nakai Y., Cameron M.D., Furling D., Yasuda R., Disney M.D. 2017. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat. Chem. Biol.13, 188.

    Article  CAS  PubMed  Google Scholar 

  36. Angelbello A.J., Rzuczek S.G., Mckee K.K., Chen J.L., Olafson H., Cameron M.D., Moss W.N., Wang E.T., Disney M.D. 2019. Precise small-molecule cleavage of an r (CUG) repeat expansion in a myotonic dystrophy mouse model. Proc. Natl. Acad. Sci. U. S. A.116, 7799–7804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan Y., Compton S.A., Sobczak K., Stenberg M.G., Thornton C.A., Griffith J.D., Swanson M.S. 2007. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res.35, 5474‒5486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tawani A., Kumar A. 2015. Structural insights reveal the dynamics of the repeating r (CAG) transcript found in Huntington’s disease (HD) and spinocerebellar ataxias (SCAs). PLoS One.10, e0131788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sobczak K., Michlewski G., de Mezer M., Kierzek E., Krol J., Olejniczak M., Kierzek R., Krzyzosiak W.J. 2010. Structural diversity of triplet repeat RNAs. J. Biol. Chem.285, 12755‒12764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Urbanek M.O., Jazurek M., Switonski P.M., Figura G., Krzyzosiak W.J. 2016. Nuclear speckles are detention centers for transcripts containing expanded CAG repeats. Biochim. Biophys. Acta—Mol.Basis Disease.1862, 1513‒1520.

    Article  CAS  Google Scholar 

  41. Mykowska A., Sobczak K., Wojciechowska M., Kozlowski P., Krzyzosiak W.J. 2011. CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Res.39, 8938‒8951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mizielinska S., Grönke S., Niccoli T., Ridler C.E., Clayton E.L., Devoy A., Moens T., Norona F.E., Woollacott I.O.C., Pietrzyk J., Cleverley K., Nicoll A.J., Pickering-Brown S., Dols J., Cabecinha M., et al. 2014. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science.345, 1192‒1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hodges A., Strand A.D., Aragaki A.K., Kuhn A., Sengstag T., Hughes G., Elliston L.A., Hartog C., Goldstein D.R., Thu D., Hollingsworth Z.R., Collin F., Synek B., Holmans P.A., Young A.B., et al. 2006. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum. Mol. Genet.15, 965‒977.

    Article  CAS  PubMed  Google Scholar 

  44. Krol J., Fiszer A., Mykowska A., Sobczak K., de Mezer M., Krzyzosiak W.J. 2007. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol. Cell.25, 575‒586.

    Article  CAS  PubMed  Google Scholar 

  45. Bañez-Coronel M., Porta S., Kagerbauer B., Mateu-Huertas E., Pantano L., Ferrer I., Guzmán M., Estivill X., Martí E. 2012. A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet.8, e1002481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Reinhardt A., Feuillette S., Cassar M., Callens C., Thomassin-Bourrel H., Birman S., Lecourtois M., Antoniewski C., Tricoire H. 2012. Lack of miRNA misregulation at early pathological stages in Drosophila neurodegenerative disease models. Front. Genet.3, 226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murmann A.E., Gao Q.Q., Putzbach W.E., Patel M., Bartom E.T., Law C.Y., Bridgeman B., Chen S., McMahon K.M., Thaxton C.S., Peter M.E. 2018. Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells. EMBO Repts.19, e45336.

    Google Scholar 

  48. Sørensen S.A., Fenger K., Olsen J.H. 1999. Significantly lower incidence of cancer among patients with Huntington disease: An apoptotic effect of an expanded polyglutamine tract? Cancer.86, 1342‒1346.

    Article  PubMed  Google Scholar 

  49. Schilling J., Broemer M., Atanassov I., Duernberger Y., Vorberg I., Dieterich C., Dagane A., Dittmar G., Wanker E., van Roon-Mom W., Winter J., Krauß S. 2019. Deregulated splicing is a major mechanism of RNA-induced toxicity in Huntington’s disease. J. Mol. Biol. 19, 1869‒1877.

    Article  CAS  Google Scholar 

  50. Lee J., Hwang Y.J., Boo J.H., Han D., Kwon O.K., Todorova K., Kowall N.W., Kim Y., Ryu H. 2011. Dysregulation of upstream binding factor-1 acetylation at K352 is linked to impaired ribosomal DNA transcription in Huntington’s disease. Cell Death Differ.18, 1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsoi H., Lau T.C.K., Tsang S.Y., Lau K.F., Chan H.Y.E. 2012. CAG expansion induces nucleolar stress in polyglutamine diseases. Proc. Natl. Acad. Sci. U. S. A.109, 13428‒13433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang Q., Chen Z.S., An Y., Liu H., Hou Y., Li W., Lau K.F., Koon A.C., Ngo J.C.K., Chan H. Y.E. 2018. A peptidylic inhibitor for neutralizing expanded CAG RNA-induced nucleolar stress in polyglutamine diseases. RNA.24, 486‒498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bañez-Coronel M., Ayhan F., Tarabochia A.D., Zu T., Perez B.A., Tusi S.K., Pletnikova O., Borchelt D.R., Ross C.A., Margolis R.L., Yachnis A.T., Troncoso J.C., Ranum L.P. 2015. RAN translation in Huntington disease. Neuron.88, 667‒677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Volovikov E.A., Davidenko A.V., Lagar’kova M.A. 2019. Molecular mechanisms of type 1 ataxia. Russ. J. Genet.55 (in press).

  55. Krauss S., Griesche N., Jastrzebska E., Chen C., Rutschow D., Achmüller C., Dorn S., Boesch S.M., Lalowski M., Wanker E., Schneider R., Schweiger S. 2013. Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex. Nat. Commun.4, 1511.

    Article  PubMed  CAS  Google Scholar 

  56. Griesche N., Schilling J., Weber S., Rohm M., Pesch V., Matthes F., Auburger G., Krauss S. 2016. Regulation of mRNA translation by MID1: A common mechanism of expanded CAG repeat RNAs. Front. Cell Neurosci.7, 226.

    Google Scholar 

  57. La Spada A.R., Taylor J.P. 2010. Repeat expansion disease: Progress and puzzles in disease pathogenesis. Nat. Rev. Genet.11, 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Babić Leko M., Župunski V., Kirincich J., Smilović D., Hortobágyi T., Hof P.R., Šimić G. 2019. Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. Behav. Neurol.2019, 2909168

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee D.Y., McMurray C.T. 2014. Trinucleotide expansion in disease: Why is there a length threshold? Curr. Opin. Genet. Dev.26, 131‒140.

    Article  CAS  PubMed  Google Scholar 

  60. Jain A., Vale R.D. 2017. RNA phase transitions in repeat expansion disorders. Nature. 546, 243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fay M.M., Anderson P.J. 2018. The role of RNA in biological phase separations. J. Mol. Biol.430, 4685–4701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boeynaems S., Alberti S., Fawzi N.L., Mittag T., Polymenidou M., Rousseau F., Schymkowitz J., Shorter J., Wolozin B., Van Den Bosch L., Tompa P., Fuxreiter M. 2018. Protein phase separation: A new phase in cell biology. Trends Cell Biol.28, 420‒435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sabari B.R., Dall’Agnese A., Boija A., Klein I.A., Coffey E.L., Shrinivas K., Abraham B.J., Hannett N.M., Zamudio A.V., Manteiga J.C., Li C.H., Guo Y.E., Day D.S., Schuijers J., Vasile E., et al. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science.361, eaar3958.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Larson A.G., Narlikar G.J. 2018. The role of phase separation in heterochromatin formation, function, and regulation. Biochemistry.57, 2540‒2548.

    Article  CAS  PubMed  Google Scholar 

  65. Singatulina A.S., Hamon L., Sukhanova M.V., Desforges B., Joshi V., Bouhss A., Lavrik O.I., Pastré D. 2019. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rept.27, 1809‒1821.

    Article  CAS  Google Scholar 

  66. Kato M., Yang Y.S., Sutter B.M., Wang Y., McKnight S.L., Tu B.P. 2019. Redox state controls phase separation of the yeast ataxin-2 protein via reversible oxidation of its methionine-rich low-complexity domain. Cell.177, 711‒721.

    Article  CAS  PubMed  Google Scholar 

  67. Harper S.Q., Staber P.D., He X., Eliason S.L., Martins I.H., Mao Q., Yang L, Kotin R.M., Paulson H.L., Davidson B. L. 2005. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc. Natl. Acad. Sci. U. S. A.102, 5820‒5825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. http://www.uniqure.com/gene-therapy/huntingtons-disease.php

  69. Bennett C.F., Swayze E.E. 2010. RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol.50, 259‒293.

    Article  CAS  PubMed  Google Scholar 

  70. https://clinicaltrials.gov/ct2/show/NCT02519036

  71. Naryshkin N.A., Weetall M., Dakka A., Narasimhan J., Zhao X., Feng Z., Ling K.K., Karp G.M., Qi H., Woll M.G., Chen G., Zhang N., Gabbeta V., Vazirani P., Bhattacharyya A., et al. 2014. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science.345, 688‒693.

    Article  CAS  PubMed  Google Scholar 

  72. Doherty E.M. 2017. Screening approaches to identify small-molecule modulators of huntingtin protein levels. Abstr. CHDI Foundation Annual Therapeutics Conference, Malta, 2017.

  73. Rousseaux M.W., Tschumperlin T., Lu H.C., Lackey E.P., Bondar V.V., Wan Y.W., Tan Q., Adamski C.J., Friedrich J., Twaroski K., Chen W., Tolar J., Henzler C., Sharma A., Bajić A., et al. 2018. ATXN1-CIC complex is the primary driver of cerebellar pathology in spinocerebellar ataxia type 1 through a gain-of-function mechanism. Neuron.97, 1235‒1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takahashi K., Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell.126, 663‒676.

    Article  CAS  PubMed  Google Scholar 

  75. Nekrasov E.D., Vigont V.A., Klyushnikov S.A., Lebedeva O.S., Vassina E.M., Bogomazova A.N., Chestkov I.V., Semashko T.A., Kiseleva E., Suldina L.A., Bobrovsky P.A., Zimina O.A., Ryazantseva M.A., Skopin A.Y., Illarioshkin S.N., et al. 2016. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegeneration.11, 27.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-15-00425).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Bogomazova or M. A. Lagarkova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain studies performed by the authors involving animals or human subjects.

Additional information

Translated by D. Timchenko

Abbreviations: GABA, gamma-aminobutyric acid; IPSC, induced pluripotent stem cells; ASO, antisense oligonucleotide; DM, myotonic dystrophy; DMPK, myotonic dystrophy protein kinase; DRPA, dentatorubral-pallidoluysian atrophy; FDA, Food and Drug Administration; FISH, fluorescence in situ hybridization; HTT, huntingtin protein; MBNL1, muscleblindlike splicing regulator 1; mCAG-RNA, mRNA with CAG repeat expansion; mCUG-RNA, mRNA with CUG expansion; mHTT, mutant huntingtin; MID1 (Midline 1), E3 ubiquitin-protein ligase Midline-1; OMIM, Online Mendelian Inheritance in Man; PolyQ, polyglutamine; PP2A, protein phosphatase 2A; RAN, repeat associated non-ATG; SBMA, spinal and bulbar muscular atrophy; SCA, spinocerebellar ataxia; sCAG, 21 bp-long RNA duplexes composed of CAG repeats.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogomazova, A.N., Eremeev, A.V., Pozmogova, G.E. et al. The Role of Mutant RNA in the Pathogenesis of Huntington’s Disease and Other Polyglutamine Diseases. Mol Biol 53, 838–849 (2019). https://doi.org/10.1134/S0026893319060037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319060037

Keywords:

Navigation