Skip to main content
Log in

Mechanisms of Procaspase-8 Activation in the Extrinsic Programmed Cell Death Pathway

  • MATHEMATICAL AND STRUCTURAL IMMUNOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Caspase-8 performs initiatory functions during the induction of apoptosis through the extrinsic pathway. Apoptosis is a type of programmed cell death that plays an important role in regulating embryogenesis and maintaining homeostasis in the tissue of an adult organism, as well as differentiating and removing damaged cells. Dysregulation of the apoptosis mechanisms is associated with the pathogenesis and progression of a number of oncological and neurodegenerative diseases. Caspase-8 (also called СAP4, FLICE, MACH, MCH5) is one of two members of the death effector domain (DED)-containing caspases. Despite the fact that the role of caspase-8 in apoptosis has been well known since the mid 1990s, we are only now beginning to understand the subtle mechanisms of its activation and regulation in response to the activation of death receptors (DRs). In particular, it was demonstrated that the activation of caspase-8 requires the formation of specific oligomeric structures, which are named DED filaments. In this review, the recent data on the mechanisms of activating initiator caspase-8 in DED filaments are considered that allow us to better understand the subtle mechanisms of the initiation of the programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Krammer P.H., Arnold R., Lavrik I.N. 2007. Life and death in peripheral T cells. Nat. Rev. Immunol. 7, 532‒542.

    Article  CAS  Google Scholar 

  2. Zamaraev A.V., Kopeina G.S., Zhivotovsky B., Lavrik I.N. 2015. Cell death controlling complexes and their potential therapeutic role. Cell Mol. Life Sci. 72, 505‒517.

    Article  CAS  Google Scholar 

  3. Lavrik I., Golks A., Krammer P.H. 2005. Death receptor signaling. J. Cell Sci. 118, 265‒267.

    Article  CAS  Google Scholar 

  4. Lavrik I.N., Golks A., Krammer P.H. 2005. Caspases: Pharmacological manipulation of cell death. J. Clin. Invest. 115, 2665‒2672.

    Article  CAS  Google Scholar 

  5. Zamaraev A.V., Kopeina G.S., Prokhorova E.A., Zhivotovsky B., Lavrik I.N. 2017. Post-translational modification of caspases: The other side of apoptosis regulation. Trends Cell Biol. 27, 322‒339.

    Article  CAS  Google Scholar 

  6. Golks A., Brenner D., Fritsch C., Krammer P.H., Lavrik I.N. 2005. c-FLIPR, a new regulator of death receptor-induced apoptosis. J. Biol. Chem. 280, 14507‒14513.

    Article  CAS  Google Scholar 

  7. Lavrik I.N., Krammer P.H. 2012. Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 19, 36‒41.

    Article  CAS  Google Scholar 

  8. Aksenova V.I., Bylino O.V., Zhivotovsky B.D., Lavrik I.N. 2013. Caspase-2: What do we know today? Mol. Biol. (Moscow). 47 (2), 165–180.

    Article  CAS  Google Scholar 

  9. Lavrik I.N. 2014. Systems biology of death receptor networks: live and let die. Cell Death Dis. 5, e1259.

    Article  CAS  Google Scholar 

  10. Riess D., Lavrik I.N. 2010. Application o two-dimensional electrophoresis to studying the composition of the receptor complex formed on the CD45/Fas receptor. Acta Naturae. 2 (5), 102‒107.

    Article  Google Scholar 

  11. Horn S., Hughes M.A., Schilling R., Sticht C., Tenev T., Ploesser M., Meier P., Sprick M.R., MacFarlane M., Leverkus M. 2017. Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in favor of NF-kappaB activation and cell survival. Cell Rep. 19, 785‒797.

    Article  CAS  Google Scholar 

  12. Lafont E., Kantari-Mimoun C., Draber P., De Miguel D., Hartwig T., Reichert M., Kupka S., Shimizu Y., Taraborrelli L., Spit M., Sprick M.R., Walczak H. 2017. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 36, 1147‒1166.

    Article  CAS  Google Scholar 

  13. Cullen S.P., Martin S.J. 2015. Fas and TRAIL 'death receptors’ as initiators of inflammation: Implications for cancer. Semin. Cell. Dev. Biol. 39, 26‒34.

    Article  CAS  Google Scholar 

  14. Hoffmann J.C., Pappa A., Krammer P.H., Lavrik I.N. 2009. A new C-terminal cleavage product of procaspase-8, p30, defines an alternative pathway of procaspase-8 activation. Mol. Cell. Biol. 29, 4431‒4440.

    Article  CAS  Google Scholar 

  15. Schleich K., Buchbinder J.H., Pietkiewicz S., Kahne T., Warnken U., Ozturk S., Schnolzer M., Naumann M., Krammer P.H., Lavrik I.N. 2016. Molecular architecture of the DED chains at the DISC: Regulation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain. Cell Death Differ. 23, 681‒694.

    Article  CAS  Google Scholar 

  16. Golks A., Brenner D., Schmitz I., Watzl C., Krueger A., Krammer P.H., Lavrik I.N. 2006. The role of CAP3 in CD95 signaling: New insights into the mechanism of procaspase-8 activation. Cell Death Differ. 13, 489‒498.

    Article  CAS  Google Scholar 

  17. Lavrik I., Krueger A., Schmitz I., Baumann S., Weyd H., Krammer P.H., Kirchhoff S. 2003. The active caspase-8 heterotetramer is formed at the CD95 DISC. Cell Death Differ. 10, 144‒145.

    Article  CAS  Google Scholar 

  18. Hughes M.A., Powley I.R., Jukes-Jones R., Horn S., Feoktistova M., Fairall L., Schwabe J.W., Leverkus M., Cain K., MacFarlane M. 2016. Co-operative and hierarchical binding of c-FLIP and caspase-8: A unified model defines how c-FLIP isoforms differentially control cell fate. Mol. Cell. 61, 834‒849.

    Article  CAS  Google Scholar 

  19. Powley I.R., Hughes M.A., Cain K., MacFarlane M. 2016. Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex. Oncogene. 35, 5629‒5640.

    Article  CAS  Google Scholar 

  20. Hughes M.A., Harper N., Butterworth M., Cain K., Cohen G.M., MacFarlane M. 2009. Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol. Cell. 35, 265‒279.

    Article  CAS  Google Scholar 

  21. Schleich K., Warnken U., Fricker N., Ozturk S., Richter P., Kammerer K., Schnolzer M., Krammer P.H., Lavrik I.N. 2012. Stoichiometry of the CD95 death-inducing signaling complex: Experimental and modeling evidence for a death effector domain chain model. Mol. Cell. 47, 306‒319.

    Article  CAS  Google Scholar 

  22. Dickens L.S., Boyd R.S., Jukes-Jones R., Hughes M.A., Robinson G.L., Fairall L., Schwabe J.W., Cain K., Macfarlane M. 2012. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol. Cell. 47, 291‒305.

    Article  CAS  Google Scholar 

  23. Schleich K., Krammer P.H., Lavrik I.N. 2013. The chains of death: A new view on caspase-8 activation at the DISC. Cell Cycle. 12, 193‒194.

    Article  CAS  Google Scholar 

  24. Fu T.M., Li Y., Lu A., Li Z., Vajjhala P.R., Cruz A.C., Srivastava D.B., DiMaio F., Penczek P.A., Siegel R.M., Stacey K.J., Egelman E.H., Wu H. 2016. Cryo-EM structure of caspase-8 tandem DED filament reveals assembly and regulation mechanisms of the death-inducing signaling complex. Mol. Cell. 64, 236‒250.

    Article  CAS  Google Scholar 

  25. Ferrao R., Li J., Bergamin E., Wu H. 2012. Structural insights into the assembly of large oligomeric signalosomes in the Toll-like receptor-interleukin-1 receptor superfamily. Sci. Signal. 5, re3.

    Article  CAS  Google Scholar 

  26. Singh N., Hassan A., Bose K. 2016. Molecular basis of death effector domain chain assembly and its role in caspase-8 activation. FASEB J. 30, 186‒200.

    Article  CAS  Google Scholar 

  27. Wang L., Yang J.K., Kabaleeswaran V., Rice A.J., Cruz A.C., Park A.Y., Yin Q., Damko E., Jang S.B., Raunser S., Robinson C.V., Siegel R.M., Walz T., Wu H. 2010. The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat. Struct. Mol. Biol. 17, 1324‒1329.

    Article  CAS  Google Scholar 

  28. Bentele M., Lavrik I., Ulrich M., Stosser S., Heermann D.W., Kalthoff H., Krammer P.H., Eils R. 2004. Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J. Cell. Biol. 166, 839‒851.

    Article  CAS  Google Scholar 

  29. Boege Y., Malehmir M., Healy M.E., Bettermann K., Lorentzen A., Vucur M., Ahuja A.K., Bohm F., Mertens J.C., Shimizu Y., Frick L., Remouchamps C., Mutreja K., Kähne T., Sundaravinayagam D., et al. 2017. A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell. 32, 342‒359, e310.

  30. Sarhan J., Liu B.C., Muendlein H.I., Li P., Nilson R., Tang A.Y., Rongvaux A., Bunnell S.C., Shao F., Green D.R., Poltorak A. 2018. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl. Acad. Sci. U. S. A. 115, E10888‒E10897.

    Article  CAS  Google Scholar 

  31. Tenev T., Bianchi K., Darding M., Broemer M., Langlais C., Wallberg F., Zachariou A., Lopez J., MacFarlane M., Cain K., Meier P. 2011. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell. 43, 432‒448.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-04-00207) and by the budget no. 0324-2019-0040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Lavrik.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanisenko, N.V., Lavrik, I.N. Mechanisms of Procaspase-8 Activation in the Extrinsic Programmed Cell Death Pathway. Mol Biol 53, 732–738 (2019). https://doi.org/10.1134/S0026893319050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319050091

Keywords:

Navigation