Skip to main content
Log in

Enzymatic Preparation of Modified DNA: Study of the Kinetics by Real-Time PCR

  • STRUCTURAL AND FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The effects of modified deoxyuridine triphosphates (mod-dUTPs) with different substituents at the C5 position of the pyrimidine cycle on the kinetics of PCR with Taq and Vent (exo-) DNA polymerases are studied. Substituents in mod-dUTP include carboxamide group and groups that are part of the side chains of alanine, valine, leucine, phenylalanine, tryptophan, or tyrosine. For each mod-dUTP, the yields of the target product are measured with the full substitution of dTTP. A fragment of bacterial DNA with a certain nucleotide sequence and a synthetic combinatorial DNA library of random nucleotide sequences are used as templates for amplification. For each mod-dUTP–template–polymerase combination, the correlation between the amplification efficiencies and yields of the target product are investigated. PCR product accumulation curves are influenced by both the template used and the presence of a modified substrate. The catalytic activity of Taq polymerase is higher when mod-dUTPs with short aliphatic substituents are used and decreases when the derivatives with long aliphatic, phenyl, and indole substituents are utilized. Vent (exo-) polymerase is less sensitive to the chemical structure of mod-dUTP. The dynamic measuring of DNA accumulation may be useful for optimizing the temperature–time PCR profiles individually for each of the mod-dUTP. The derivatives may be used in combination with Vent (exo-) polymerase to obtain modified DNA sequences for the method of selection of modified aptamers (mod-SELEX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhuo Z., Yu Y., Wang M., Li J., Zhang Z., Liu J., Wu X., Lu A., Zhang G., Zhang B. 2017. Recent advances in SELEX technology and aptamer applications in biomedicine. Int. J. Mol. Sci. 18, e2142.

    Article  CAS  PubMed  Google Scholar 

  2. Lapa S.A., Chudinov A.V., Timofeev E.N. 2016. The toolbox for modified aptamers. Mol. Biotechnol. 58, 79–92.

    Article  CAS  PubMed  Google Scholar 

  3. Gold L., Ayers D., Bertino J., Bock C., Bock A., Brody E.N., Carter J., Dalby A.B., Eaton B.E., Fitzwater T., Flather D., Forbes A., Foreman T., Fowler C., Gawande B., et al. 2010. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 5, e15004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gold L. 2015. SELEX: How it happened and where it will go. J. Mol. Evol. 81, 140–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Latham J.A., Johnson R., Toole J.J. 1994. The application of a modified nucleotide in aptamer selection: Novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine. Nucleic Acids Res. 22, 2817–2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davies D.R., Gelinas A.D., ZhangC., Rohloff J.C., Carter J.D., O’Connell D., Waugh S.M., Wolk S.K., Mayfield W.S., Burgin A.B., Edwards T.E., Stewart L.J., Gold L., Janjic N., Jarvis T.C. 2012. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc. Natl. Acad. Sci. U. S. A. 109, 19971–19976.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kopylov A.M., Spiridonova V.A. 2000. Combinatorial chemistry of nucleic acids: SELEX. Mol. Biol. (Moscow). 34 (6), 940–955.

  8. Kuwahara M., Hanawa K,Ohsawa K, Kitagata R, Ozaki H, Sawai H. 2006. Direct PCR amplification of various modified DNAs having amino acids: convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg. Med. Chem. 14, 2518–2526.

    Article  CAS  PubMed  Google Scholar 

  9. Masud M.M., Kuwahara M., Ozaki H., Sawai H. 2004. Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX. Bioorg. Med. Chem. 12, 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  10. Lapa S.A., Romashova K.S., Spitsyn M.A., Shershov V.E., Kuznetsova V.E., Guseinov T.O., Zasedateleva O.A., Radko S.P., Timofeev E.N., Lisitsa A.V., Chudinov A.V. 2018. Preparation of modified combinatorial DNA libraries via emulsion PCR with subsequent strand separation. Mol. Biol. (Moscow). 52 (6), 854–864.

    Article  CAS  Google Scholar 

  11. Vaught J.D., Bock C., Carter J., Fitzwater T., Otis M., Schneider D., Rolando J., Vaugh S., Wilcox S.K., Eaton B.E. 2010. Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 132, 4141–4151.

    Article  CAS  PubMed  Google Scholar 

  12. Tolle F., Wilke J., Wengel J., Mayer G. 2014. By-product formation in repetitive PCR amplification of DNA libraries during SELEX. PLoS One. 9, e114693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chudinov A.V., Kiseleva Ya.Yu., Kuznetsova V.E., Shershov V.E., Spitsyn M.A., Guseinov T.O., Lapa S.A., Timofeev E.N., Archakov A.I., Lisitsa A.V., Radko S.P., Zasedatelev A.S. 2017. Structural and functional analysis of biopolymers and their complexes: Enzymatic synthesis of high-modified DNA. Mol. Biol. (Moscow). 51, 534–544.

    Article  CAS  Google Scholar 

  14. Mikhailovich V., Lapa S., Gryadunov D., Sobolev A., Strizhkov B., Chernyh N., Skotnikova O., Irtuganova O., Moroz A., Litvinov V., Vladimirskii M., Perelman M., Chernousova L., Erokhin V., Zasedatelev A., Mirzabekov A. 2001. Identification of rifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips. J. Clin. Microbiol. 39, 2531–2540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gryadunov D., Mikhailovich V., Lapa S., Roudinskii N., Donnikov M., Pan’kov S., Markova O., Zasedatelev A., Mirzabekov A., Kuz’min A., Chernousova L., Skotnikova O., Moroz A. 2005. Evaluation of hybridisation on oligonucleotide microarrays for analysis of drug-resistant Mycobacterium tuberculosis. Clin. Microbiol. Infect. 11, 531–539.

    Article  CAS  PubMed  Google Scholar 

  16. Ramakers C., Ruijter J.M., Deprez R.H., Moorman A.F. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66.

    Article  CAS  PubMed  Google Scholar 

  17. Peirson S.N., Butler J.N., Foster R.G. 2003. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 31, e73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu W., Saint D.A. 2002. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 302, 52–59.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmed M., Kim D.R. 2018. PCR: An R package for quality assessment, analysis and testing of qPCR data. Peer J. 6, e4473.

    Article  CAS  PubMed  Google Scholar 

  20. Lapa S.A., Volkova O.S., Spitsyn M.A., Shershov V.E., Kuznetsova V.E., Guseinov T.O., Zasedatelev A.S., Chudinov A.V. 2019. Amplification efficiency and substrate properties of fluorescent-labeled deoxyuridine triphosphates in PCR with DNA polymerases devoid of 3′-5′ exonuclease activity. Russ. J. Bioorg. Chem. 45 (in press).

  21. Ioannou A.K., Alexiadou D.K., Kouidou S.A., Voulgaropoulos A.N., Girousi S.T. 2010. Electroanalytical study of SYBR Green I and ethidium bromide intercalation in methylated and unmethylated amplicons. Anal. Chim. Acta. 657, 163–168.

    Article  CAS  PubMed  Google Scholar 

  22. Mao F., Leung W.Y., Xin X. 2007. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 7, 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan S.A., Sung K., Nawaz M.S.(2011. Detection of aacA-aphD, qacEδ1, marA, floR, and tetA genes from multidrug-resistant bacteria: Comparative analysis of real-time multiplex PCR assays using EvaGreen® and SYBR® Green I dyes. Mol. Cell. Probes. 25, 78–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lapa.

Additional information

Translated by N. Onishchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapa, S.A., Pavlov, A.S., Kuznetsova, V.E. et al. Enzymatic Preparation of Modified DNA: Study of the Kinetics by Real-Time PCR. Mol Biol 53, 460–469 (2019). https://doi.org/10.1134/S0026893319030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319030099

Keywords:

Navigation