Skip to main content
Log in

Epigenetic Mechanisms of Peptide-Driven Regulation and Neuroprotective Protein FKBP1b

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Cortexin is a clinically approved cerebral cortex polypeptide complex in calves. The mechanism of cortexin action is not understood well. Two cortexin derivatives, short peptides EDR and DS with neuroprotective activity, were synthesized. According to the data of molecular modeling, these peptides are able to bind to the histone H1.3 protein. This can affect the conformation of histone H1.3, which leads to a change in the chromatin structure in the loci of some genes, in particular Fkbp1b encoding the FK506-binding protein. Electrophysiological processes associated with the Ca2+ exchange are disturbed in the pyramidal neurons of the hippocampus during aging of the brain. The Fkbp1b gene encodes peptidyl-prolyl cis-trans isomerase, regulating the release of calcium ions from the sarcoplasmic and endoplasmic reticulum of neurons. The activation of the Fkbp1b gene transcription under treatment with short peptides can promote the synthesis of its protein product and the activation of the Ca2+ release from organelles of the sarcoplasmic and endoplasmic reticulum of neurons, which, in turn, can lead to an increase in the functional activity of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Anisimov V.N., Khavinson V.Kh. 2010. Peptide bioregulation of aging: Results and prospects. Biogerontology. 11 (2), 139‒149.

    Article  CAS  PubMed  Google Scholar 

  2. Khavinson V.Kh. 2014. Peptides, genome, aging. Adv. Gerontol. 4 (4), 337–345.

    Article  Google Scholar 

  3. Khavinson V.Kh., Kunik B.I., Ryzhak G.A. 2012. Peptide bioregulators, a new class of geroprotectors: 1. Results of experimental studies. Usp. Gerontol. 25 (4), 696‒708.

    Google Scholar 

  4. Khavinson V.Kh., Korkushko O.V., Shatilo B.V., Antonyuk-Shcheglova I.A. 2011. A peptide geroprotector from the epiphysis retards accelerated aging in elderly persons. Byull. Eksp. Biol. Med. 151 (3), 366‒369.

    Article  Google Scholar 

  5. Khavinson V.Kh., Grigoriev E.I., Malinin V.V., Ryzhak G.A. 2008. Eurasian Patent EA 010157.

  6. Morozov V.G., Ryzhak G.A., Malinin V.V., Rutkovskaya V.N. 2011. Tsitogeny. Biologicheski aktivnye dobavki k pishche: Metod. rekomendatsii (Cytogens: Biologically Active Dietary Supplements. Methodological Guidelines). St. Petersburg: Kosta.

  7. Balashova S.N., Zhernakov G.L., Dudkov A.V. 2008. Applications of peptide bioregulators in elderly persons with psychoemotional disturbances. Usp. Gerontol. 3 (21), 448–452.

    Google Scholar 

  8. Arutjunyan A., Kozina L., Stvolinskiy S. 2012. Pinealon protects the rat offspring from prenatal hyperhomocysteinemia. Int. J. Clin. Exper. Med. 2 (5), 179–185.

    Google Scholar 

  9. Khavinson V., Ribakova Y., Kulebiakin K. 2011. Pinealon increases cell viability by suppression of free radical levels and activating proliferative processes. Rejuvenation Res. 5, 535–541.

    Article  CAS  Google Scholar 

  10. Umnov R.S., Lin’kova N.S., Khavinson V.Kh. 2013. Neuroprotective effects of peptide bioregulators in persons of different ages: A review. Usp. Gerontol. 4 (26), 671‒678.

    Google Scholar 

  11. Khavinson V., Linkova N., Kukanova E., Bolshakova A., Gainullina A., Tendler S., Morozova E., Tarnovskaya S., Vinski D.S.P., Bakulev V., Kasyanenko N. 2017. Neuroprotective effect of EDR peptide in mouse model of Huntington’s disease. J. Neurol. Neurosci. 1(8), 1‒11.

    Google Scholar 

  12. Krasovskaya N.A., Kukanova E.O., Lin’kova N.S., Popugaeva E.A., Khavinson V.Kh. 2017. Tripeptides restore the numbers of neuronal spines in an in vitro model of Alzheimer’s disease. Klet. Technol. Biol. Med. 2, 101‒104.

    Google Scholar 

  13. Fedoreyeva L.I., Smirnova T.A., Kolomiitseva G.Ya., Khavinson V.Kh., Vanyushin B.F. 2013. Interaction of short peptides with FITC-labeled wheat histones and their complexes with deoxyribooligonucleotides. Biochemistry (Moscow). 78 (2), 166‒175.

    CAS  PubMed  Google Scholar 

  14. Labute P. 2010. LowModeMD: Implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J. Chem. Inf. Model. 50, 792‒800.

    Article  CAS  PubMed  Google Scholar 

  15. Case D.A., Darden T.A., Cheatham T.E. 2012. AMBER 12. San Francisco: Univ. of California Press.

    Google Scholar 

  16. Edelsbrunner H., Facello M., Fu R., Liang J. 1995. Measuring proteins and voids in proteins. In: Proc. 28th Hawaii Int. Conf. on Systems Science, pp. 256–264.

  17. Soga S., Shirai H., Kobori M., Hirayama N. 2007. Use of amino acid composition to predict ligand-binding sites. J. Chem. Inf. Model. 47, 400‒406.

    Article  CAS  PubMed  Google Scholar 

  18. Khachaturian Z.S. 1989. The role of calcium regulation in brain aging: Reexamination of a hypothesis. Aging (Milan). 1, 17–34.

    CAS  PubMed  Google Scholar 

  19. Disterhoft J.F., Thompson L.T., Moyer J.R., Mogul D.J. 1996. Calcium-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sci. 59, 413–420.

    Article  CAS  PubMed  Google Scholar 

  20. Landfield P.W., Pitler T.A. 1984. Prolonged Ca2+-dependent after hyperpolarization in hippocampal neurons of aged rats. Science. 226, 1089–1092.

    Article  CAS  PubMed  Google Scholar 

  21. Moyer J.R., Thompson L.T., Black J.P., Disterhoft J.F. 1992. Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner. J. Neurophysiol. 68, 2100–2109.

    Article  CAS  PubMed  Google Scholar 

  22. Gant J.C., Sama M.M., Landfield P.W., Thibault O. 2006. Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+-induced Ca2+ release. J. Neurosci. 26, 3482–3490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lancaster B., Hu H., Ramakers G.M., Storm J.F. 2001. Interaction between synaptic excitation and slow afterhyperpolarization current in rat hippocampal pyramidal cells. J. Physiol. 536, 809–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andrade R., Foehring R.C., Tzingounis A.V. 2012. The calcium-activated slow AHP: Cutting through the Gordian knot. Front. Cell Neurosci. 6, 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Voglis G., Tavernarakis N. 2006. The role of synaptic ion channels in synaptic plasticity. EMBO Rep. 7, 1104‒1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tombaugh G.C., Rowe W.B., Rose G.M. 2005. The slow afterhyperpolarization in hippocampal CA1 neurons covaries with spatial learning ability in aged Fisher 344 rats. J. Neurosci. 25, 2609–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luebke J.I., Amatrudo J.M. 2012. Age-related increase of sI(AHP) in prefrontal pyramidal cells of monkeys: Relationship to cognition. Neurobiol. Aging. 33, 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  28. Zalk R., Lehnart S.E., Marks A.R. 2007. Modulation of the ryanodine receptor and intracellular calcium. Annu. Rev. Biochem. 76, 367–385.

    Article  CAS  PubMed  Google Scholar 

  29. Gant J.C., Chen K.C., Norris C.M., Kadish I., Thibault O., Blalock E.M., Porter N.M., Landfield P.W. 2011. Disrupting function of FK506-binding protein 1b/12.6 induces the Ca2+-dysregulation aging phenotype in hippocampal neurons. J. Neurosci. 5, 1693‒1703.

    Article  CAS  Google Scholar 

  30. Gant J.C., Blalock E.M., Chen K.C., Kadish I., Porter N.M., Norris C.M., Thibault O., Landfield P.W. 2014. FK506-binding protein 1b/12.6: A key to aging-related hippocampal Ca2+ dysregulation? Eur. J. Pharmacol. 739, 74‒82.

    Article  CAS  PubMed  Google Scholar 

  31. Anwer H., Vinit K., Rohini P., Hirokuni A., Qi C. 2013. Sirolimus-FKBP12.6 impairs endothelial barrier function through protein kinase C-α activation and disruption of the p120-vascular endothelial cadherin interaction. Arteriosclerosis, Thromb. Vasc. Biol. 10, 2425‒2431.

    Google Scholar 

  32. Prevel N., Allenbach Y., Klatzmann D., Salomon B., Benveniste O. 2013. Beneficial role of rapamycin in experimental autoimmune myositis. PLoS One. 8 (11), e74450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oshiro N., Yoshino K., Hidayat S., Tokunaga C., Hara K. 2004. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells. 4, 359‒366.

    Article  CAS  Google Scholar 

  34. Gant J.C., Chen K.C., Kadish I., Blalock E.M., Thibault O., Porter N.M., Landfield P.W. 2015. Reversal of aging-related neuronal Ca2+ dysregulation and cognitive impairment by delivery of a transgene encoding FK506-binding protein 12.6/1b to the hippocampus. J. Neurosci. 35, 30.

    Article  CAS  Google Scholar 

  35. Gant J.C., Blalock E.M., Chen K.C., Kadish I., Thibault O., Porter N.M., Landfield P.W. 2017. FK506-binding protein 12.6/1b, a negative regulator of [Ca2+], rescues memory and restores genomic regulation in the hippocampus of aging rats. J. Neurosci. 38 (4), 1030–1041.

    Article  PubMed  Google Scholar 

  36. Fedoreyeva L.I., Kireev I.I., Khavinson V.Kh., Vanyushin B.F. 2011. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry (Moscow). 76 (11), 1210–1219.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Lin’kova.

Additional information

Translated by D. Novikova

Abbreviations: CNS, central nervous system; Brn3, brain-specific homeobox-containing transcription factor; CXCL12, chemokine of the CXC subfamily; EDR, pinealon; FK506, rapamycin; FKBP1b, FK506-binding protein 1b; IL-2, interleukin-2; mTORC1, mTOR1 complex; Pax6, aniridia type II protein or oculorhombin; PLB, propensity for ligand binding; Prox1, homeobox-containing protein 1 with Prospero domain; RyR, ryanodine receptor; sAHP, slow K+-dependent hyperpolarization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznik, B.I., Davydov, S.O., Popravka, E.S. et al. Epigenetic Mechanisms of Peptide-Driven Regulation and Neuroprotective Protein FKBP1b. Mol Biol 53, 299–307 (2019). https://doi.org/10.1134/S0026893319020092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319020092

Keywords:

Navigation