Skip to main content
Log in

Differences in Titin and Nebulin Gene Expression in Skeletal Muscles of Rats Chronically Alcoholized by Different Methods

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

This work studied the changes in the levels of the main proteins of the calpain system (μ-calpain, Са2+-dependent protease, and fragments of its autolysis, inhibitor calpastatin) and μ-calpain substrates (giant proteins of the sarcomere cytoskeleton, titin and nebulin) in skeletal muscle (m. gastrocnemius, m. soleus, m. longissimus dorsi) of rats alcoholized for three months by different methods using agar containing 30% ethanol and nutrient-balanced liquid feed containing 5% ethanol using gel electrophoresis methods under denaturing conditions and immunoblotting. No decrease in the muscle mass/body weight ratio, indicating the development of atrophy, no increase in autolysis of μ-calpain, indicating an increase in the activity of this enzyme, no changes in the content of intact titin (T1), nebulin, μ-calpain and calpastatin, as well as the total calpain activity measured using Calpain Activity Assay Kit were detected in alcoholized rats of both groups. No changes in the total level of titin phosphorylation in the rat muscles of alcoholized groups were detected using Pro-Q Diamond fluorescent dye for phosphate groups of proteins. No statistically significant differences in the content of titin and nebulin mRNA in skeletal muscles of control rats and rats alcoholized using agar were detected. In rats, alcoholized by the method of liquid feed, the levels of titin and nebulin mRNA were increased 1.5–2.5 times possibly due to a higher fat content in such a diet. The presented data may be useful for choosing a chronic alcoholization model for animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Steiner J.L., Lang C.H. 2015. Dysregulation of skeletal muscle protein metabolism by alcohol. Am. J. Physiol. Endocrinol. Metab. 308, E699–E712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shenkman B.S., Belova S.P., Zinovyeva O.E., Samkhaeva N.D., Mirzoev T.M., Vilchinskaya N.A., Altaeva E.G., Turtikova O.V., Kostrominova T.Y., Nemirovskaya T.L. 2018. Effect of chronic alcohol abuse on anabolic and catabolic signaling pathways in human skeletal muscle. Alcohol. Clin. Exp. Res. 42 (1), 41–52.

    Article  CAS  PubMed  Google Scholar 

  3. Hanid A., Slavin G., Mair W., Sowter C., Ward P., Webb J., Levi J. 1981. Fiber type changes in striated muscle of alcoholics. J. Clin. Pathol. 34, 991–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Freilich R., Kirsner R., Whelan G., Chmiel R., Byrne E. 1996. Quantitative measure of muscle strength and size in chronic alcoholism: An early indication of tissue damage. Drug Alcohol. Rev. 15, 277–287.

    Article  CAS  PubMed  Google Scholar 

  5. Shenkman B.S., Maslova G.A., Stogova Yu.V., Zinov’eva O.E., Yakhno N.N. 2009. Atrophy of slow and fast striated muscle fibers in patients with chronic alcoholism: Clinical physiological analysis. Tekhnol. Zhivykh Sistem. 8, 3–10.

    Google Scholar 

  6. Nemirovskaya T.L., Shenkman B.S., Zinovyeva O.E., Kazantseva Yu.N., Samkhaeva N.D. 2015. Development of clinical and morphological signs of chronic alcoholic myopathy in men with prolonged alcohol intoxication. Hum. Physiol. 41 (6), 625–628.

    Article  CAS  Google Scholar 

  7. Preedy V.R., Peters T.J. 1988. The effect of chronic ethanol ingestion on protein metabolism in type-I- and type-II-fibre-rich skeletal muscles of the rat. Biochem. J. 254, 631–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lysenko E.A., Turtikova O.V., Morozkina E.V., Khotchenkov V.P., Popov V.O., Shenkman B.S. 2012. Effects of recombinant mechano-dependent growth factor against the background of chronic alcohol intoxication in rats. Ross. Fiziol. Zh. im. I.M. Sechenova. 98, 283–292.

    CAS  PubMed  Google Scholar 

  9. Reilly M.E., McKoy G., Mantle D., Peters T.J., Goldspink G., Preedy V.R. 2000. Protein and mRNA levels of the myosin heavy chain isoforms Ibeta, IIa, IIx and IIb in type I and type II fibre-predominant rat skeletal muscles in response to chronic alcohol feeding. J. Muscle Res. Cell Motil. 21, 763–773.

    Article  CAS  PubMed  Google Scholar 

  10. Hunter R.J., Neagoe C., Järveläinen H.A., Martin C.R., Lindros K.O., Linke W.A., Preedy V.R. 2003. Alcohol affects the skeletal muscle proteins, titin and nebulin in male and female rats. J. Nutr. 133, 1154–1157.

    Article  CAS  PubMed  Google Scholar 

  11. Gritsyna Y.V., Salmov N.N., Bobylev A.G., Ulanova A.D., Kukushkin N.I., Podlubnaya Z.A., Vikhlyantsev I.M. 2017. Increased autolysis of μ-calpain in skeletal muscles of chronic alcohol-fed rats. Alcohol. Clin. Exp. Res. 41, 1686–1694.

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki K. 1990. The structure of the calpains and the calpain gene. In: Intracellular Calcium-Dependent Proteolysis. Eds. Mellgren R.L., Murachi T. Boca Raton, FL: CRC Press, pp. 25–35.

    Google Scholar 

  13. Goll D.E., Thompson V.F., Li H., Wei W., Cong J. 2003. The calpain system. Physiol. Rev. 83, 731–801.

    Article  CAS  PubMed  Google Scholar 

  14. Goll D.E., Neti G., Mares S.W., Thompson V.F. 2008. Myofibrillar protein turnover: The proteasome and the calpains. J. Anim. Sci. 86, E19–E35.

    Article  CAS  PubMed  Google Scholar 

  15. Baki A., Tompa P., Alexa A., Molnar O., Friedrich P. 1996. Autolysis parallels activation of mu-calpain. Biochem. J. 318, 897–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murphy R.M., Snow R.J., Lamb G.D. 2006. mu-Calpain and calpain-3 are not autolyzed with exhaustive exercise in humans. Am. J. Physiol. Cell. Physiol. 290, C116–C122.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy R.M., Verburg E., Lamb G.D. 2006. Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle. J. Physiol. 576, 595–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohrhauser D.A., Underwood K.R., Weaver A.D. 2011. In vitro degradation of bovine myofibrils is caused by μ-calpain, not caspase-3. J. Anim. Sci. 89, 798–808.

    Article  CAS  PubMed  Google Scholar 

  19. Lang C.N., Wu D., Frost R.A., Jefferson L.S., Kimball S.R., Vary T.C. 1999. Inhibition of muscle protein synthesis by alcohol is associated with modulation of eIF2B and eIF4E. Am. J. Physiol. Endocrinol. Metab. 277, E268 –E276.

    Article  CAS  Google Scholar 

  20. Lieber C.S., DeCarli L.M. 1989. Liquid diet technique of ethanol administration: 1989 update. Alcohol Alcohol. 24, 197–211.

    CAS  PubMed  Google Scholar 

  21. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods. 25, 402–408.

    Article  CAS  Google Scholar 

  22. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

    Article  CAS  Google Scholar 

  23. Vikhlyantsev I.M., Podlubnaya Z.A. 2012. New forms of titin (connectin) and their functional role in the striated muscles of mammals: Facts and hypotheses. Usp. Biol. Khim. 52, 239–280.

    CAS  Google Scholar 

  24. Tatsumi R., Hattori A. 1995. Detection of giant myofibrillar proteins connectin and nebulin by electrophoresis in 2% polyacrylamide slab gels strengthened with agarose. Anal. Biochem. 224, 28–31.

    Article  CAS  PubMed  Google Scholar 

  25. Vikhlyantsev I.M., Podlubnaya Z.A. 2017. Nuances of electrophoresis study of titin/connectin. Biophys. Rev. 9, 189–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borbely A., Falcao-Pires I., van Heerebeek L., Hamdani N., Edes I., Gavina C., Leite-Moreira A.F., Bronzwaer J.G., Papp Z., van der Velden J., Stienen G.J., Paulus W.J. 2009. Hypophosphorylation of the stiff N2B-titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ. Res. 104, 780–786.

    Article  CAS  PubMed  Google Scholar 

  27. Cazorla O., Freiburg A., Helmes M., Centner T., McNabb M., Wu Y., Trombitas K., Labeit S., Granzier H. 2000. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ. Res. 86, 59–67.

    Article  CAS  PubMed  Google Scholar 

  28. Liversage A.D., Holmes D., Knight P.J., Tskhovrebova L., Trinick J. 2001. Titin and the sarcomere symmetry paradox. J. Mol. Biol. 305, 401–409.

    Article  CAS  PubMed  Google Scholar 

  29. Koll M., Ahmed S., Mantle D., Donohue T.M., Palmer T.N., Simanowski U.A., Seltz H.K., Peters T.J., Preedy V.R. 2002. Effect of acute and chronic alcohol treatment and their superimposition on lysosomal, cytoplasmic, and proteosomal protease activities in rat skeletal muscle in vivo. Metabolism. 51, 97–104.

    Article  CAS  PubMed  Google Scholar 

  30. Somerville L.L., Wang K. 1988. Sarcomere matrix of striated muscle: In vivo phosphorylation of titin and nebulin in mouse diaphragm muscle. Arch. Biochem. Biophys. 262, 118–129.

    Article  CAS  PubMed  Google Scholar 

  31. Krüger M., Linke W.A. 2006. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. J. Muscle Res. Cell Motil. 27, 435–444.

    Article  CAS  PubMed  Google Scholar 

  32. Kötter S., Gout L., Von Frieling-Salewsky M., Müller A.E., Helling S., Marcus K., Dos Remedios C., Linke W.A., Krüger M. 2013. Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovasc. Res. 99, 648–656.

    Article  CAS  PubMed  Google Scholar 

  33. Hidalgo C., Hudson B., Bogomolovas J., Zhu Y., Anderson B., Greaser M., Labeit S., Granzier H. 2009. PKC phosphorylation of titin’s PEVK element: A novel and conserved pathway for modulating myocardial stiffness. Circ. Res. 105, 631–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gautel M., Goulding D., Bullard B., Weber K., Fürst D.O. 1996. The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J. Cell Sci. 109, 2747–2754.

    CAS  PubMed  Google Scholar 

  35. Hidalgo C.G., Chung C.S., Saripalli C., Methawasin M., Hutchinson K.R., Tsaprailis G., Labeit S., Mattiazzi A., Granzier H.L. 2013. The multifunctional Ca2+/cal-modulin-dependent protein kinase II delta (CaMKIIδ) phosphorylates cardiac titin’s spring elements. J. Mol. Cell Cardiol. 54, 90–97.

    Article  CAS  PubMed  Google Scholar 

  36. Di Lisa F., De Tullio R., Salamino F., Barbato R., Melloni E., Siliprandi N., Schiaffino S., Pontremoli S. 1995. Specific degradation of troponin T and I by μ‑calpain and its modulation by substrate phosphorylation. Biochem. J. 308, 57–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ulanova A., Gritsyna Y., Vikhlyantsev I., Salmov N., Bobylev A., Abdusalamova Z., Rogachevsky V., Shenkman B., Podlubnaya Z. 2015. Isoform composition and gene expression of thick and thin filament proteins in striated muscles of mice after 30-day space flight. Biomed. Res. Int. 2015, 104735. https://doi.org/10.1155/2015/104735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ottenheijm C.A., Voermans N.C., Hudson B.D., Irving T., Stienen G.J., van Engelen B.G., Granzier H. 2012. Titin-based stiffening of muscle fibers in Ehlers–Danlos syndrome. J. Appl. Physiol. 112 (7), 1157–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vary T.C., Deiter G. 2005. Long-term alcohol administration inhibits synthesis of both myofibrillar and sarcoplasmic proteins in heart. Metabolism. 54, 212–219.

    Article  CAS  PubMed  Google Scholar 

  40. Gritsyna Yu.V., Salmov N.N., Vikhlyantsev I.M., Ulanova A.D., Sharapov M.G., Teplova V.V., Podlubnaya Z.A. 2013. Changes in gene expression and titin (connectin) content in striated muscles of chronically alcoholized rats. Mol. Biol. (Moscow). 47 (6), 871–878.

    Article  CAS  Google Scholar 

  41. Gritsyna Yu.V., Salmov N.N., Bobylev A.G., Fadeeva I.S., Fesenko N.I., Sadikova D.G., Kukushkin N.I., Podlubnaya Z.A., Vikhlyantsev I.M. 2017. Chronic alcohol intoxication is not accompanied by an increase in calpain proteolytic activity in cardiac muscle of rats. Biochemistry (Moscow). 82 (2), 168–175.

    CAS  PubMed  Google Scholar 

  42. Lipina C., Hundal H.S. 2017. Lipid modulation of skeletal muscle mass and function. Cachexia Sarcopenia Muscle. 8 (2), 190–201. https://doi.org/10.1002/jcsm.12144

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Gritsyna.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsyna, Y.V., Ulanova, A.D., Salmov, N.N. et al. Differences in Titin and Nebulin Gene Expression in Skeletal Muscles of Rats Chronically Alcoholized by Different Methods. Mol Biol 53, 54–63 (2019). https://doi.org/10.1134/S0026893319010035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319010035

Keywords:

Navigation