Skip to main content
Log in

Mechanisms and Origin of Bacterial Biolumenescence

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The origin of bioluminescence in living organisms was first mentioned by Charles Darwin (1859) and remains obscure despite significant success achieved over the past decades. Here we discuss the mechanisms of bacterial bioluminescence. We have the main results from structural and functional analysis of the genes of lux operons, enzymes (luciferase), and mechanisms of bioluminescence in several species of marine bacteria, which belong to three genera, Vibrio, Aliivibrio, and Photobacterium (A. fischeri, V. harveyi, P. leiognathi, and P. phosphoreum), and in terrestrial bacteria of the genus Photorhabdus (Ph. luminescens). The structure and mechanisms for the regulation of the expression of the lux operons are discussed. The fundamental characteristics of luciferase and luciferase-catalyzed reactions (stages of FMNH2 and tetradecanal oxidation, dimensional structure, as well as folding and refolding of the macromolecule) are described. We also discuss the main concepts of the origin of bacterial bioluminescence and its role in the ecology of modern marine fauna, including its involvement in the processes of detoxification of the reactive oxygen species and DNA repair, as well as the bait hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Wilson T., Hastings J.W. 1993. Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197‒230.

    Article  Google Scholar 

  2. Dunlop P.V., Urbanczyk H. 2013. Luminous bacteria. In: The Prokaryotes—Prokaryotic Physiology and Biochemistry. Ed. Rosenberg E. Berlin: Springer.

    Google Scholar 

  3. Pflüger E. 1875. Über die Phosphorescenz verwesender Organismen. Arch. Ges. Physiol. Men Tiere. 11, 222‒263.

    Article  Google Scholar 

  4. Robertson L.A., Figge M.J., Dunlap P.V. 2011. Beijerinck and the bioluminescent bacteria: Microbiological experiments in the late 19th and early 20th centuries. FEMS Microbiol. Ecol. 75, 185‒194.

    Article  CAS  PubMed  Google Scholar 

  5. Gitel’zon I.N., Rodicheva E.K., Medvedeva S.E., Primakova G.A., Kondrat’eva E.N. 1984. Svetyashchiesya bakterii (Luminescent Bacteria). Novosibirsk: Nauka.

    Google Scholar 

  6. Danilov V.S., Egorov N.S. 1990. Bakterial’naya lumi-nestsentsiya (Bacterial Luminescence). Moscow: Mosk. Gos. Univ.

    Google Scholar 

  7. Vasil’ev R.F. 1983. Pathways of hemiluminescence excitation in organic compounds. In: Biokhemilyumi-nestsentsiya (Biochemiluminescence). Moscow: Nauka, pp. 31‒55.

    Google Scholar 

  8. Sharipov G.L., Kazakov V.P., Tolstikov G.A. 1990. Khimiya i khemilyuminestsentsiya 1,2-dioksetanov (Chemistry and Chemiluminescence of 1,2-Dioxetanes). Moscow: Nauka.

    Google Scholar 

  9. Hastings J.W. 1995. Bioluminescence: Similar chemistries but many different evolutionary origins. Photochem. Photobiol. 62, 599‒600.

    Article  CAS  Google Scholar 

  10. Mager H.L.X., Tu S.-C. 1995. Chemical aspects of bioluminescence. Photochem. Photobiol. 62, 607‒614.

    Article  PubMed  Google Scholar 

  11. Engebrecht J., Nealson K., Silverman M. 1983. Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell. 32, 773‒781.

    Article  CAS  PubMed  Google Scholar 

  12. Cohn D.H., Ogden R.C., Abelson J.N., Baldwin T.O., Nealson K.H., Simon M.I., Mileham A.J. 1983. Cloning of the Vibrio harveyi luciferase genes: Use of a synthetic oligonucleotide probe. Proc. Natl. Acad. Sci. U. S. A. 80, 120‒123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meighen E.A. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55, 123‒142.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Eberhard A., Burlingame A.L., Eberhard C., Kenyon G.L., Nealson K.H., Oppenheimer N.J. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry. 20, 2444‒2449.

    Article  CAS  PubMed  Google Scholar 

  15. Hanzelka B., Greenberg E.P. 1995. Evidence that the terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177, 815‒817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manukhov I.V., Melkina O.E., Goryanin I.I., Baranova A.V., Zavilgelsky G.B. 2010. The N-terminal domain of Aliivibrio fischeri LuxR is a target of the GroEL chaperonin. J. Bacteriol. 192, 5549‒5551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fuqua W.C., Winans S.C., Greenberg E.P. 1994. Quorum sensing in bacteria the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269‒275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuqua W.C., Winans S.C., Greenberg E.P. 1996. Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum sensing transcriptional regulators. Annu. Rev. Microbiol. 50, 727‒751.

    Article  CAS  PubMed  Google Scholar 

  19. Nelson E.J., Tunsjo H.S., Fidopiastis P.M., Sorum H., Ruby E.G. 2007. A novel lux-operon in the cryptically luminescent fish pathogen Vibrio salmonicida is associated with virulence. Appl. Environ. Microbiol. 73, 1825‒1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manukhov I.V., Khrulnova S.A., Baranova A., Zavilgelsky G.B. 2011. Comparative analysis of the lux-operons in Aliivibrio logei KCh1 (a Kamchatka isolate) and Aliivibrio salmonicida. J. Bacteriol. 193, 3998‒4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waters C.M., Bassler B.L. 2005. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319‒346.

    Article  CAS  PubMed  Google Scholar 

  22. Khmel I.A., Metlitskaya A.Z. 2006. Quorum sensing regulation of gene expression: A promising target for drugs against bacterial pathogenicity. Mol. Biol. (Moscow). 46 (2), 169–182.

    Article  CAS  Google Scholar 

  23. Zaitseva Yu.V., Popova A.A., Khmel I.A. 2014. Quorum sensing regulation in bacteria of the family Enterobacteriaceae. Russ. J. Genet. 50 (4), 323‒341.

    Article  CAS  Google Scholar 

  24. Chen X., Schauder S., Potler N., Van Dorsselaer A., Pelczer I., Bassler B.L., Hughson F.M. 2002. Structural identification of a bacterial quorum sensing signal containing boron. Nature. 415, 545‒549.

    Article  CAS  PubMed  Google Scholar 

  25. Bassler B., Miller M.B. 2013. Quorum sensing. In: The Prokaryotes–Prokaryotic Communities and Ecophysiology. Eds. Rosenberg E., Delong E.F., Thompson F., Lory S., Stackebrandt E. Berlin: Springer, pp. 495‒509. doi 10.1007/978-3-642-30123-0_60

  26. Tu S.-C., Mager H.I.X. 1995. Biochemistry of bacterial bioluminescence. Photochem. Photobiol. 62, 615‒624.

    Article  CAS  PubMed  Google Scholar 

  27. Lei B., Ding Q., Tu S.C. 2004. Identity of the emitter in the bacterial luciferase luminescence reaction: Binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5'phosphate as a model. Biochemistry. 43, 15975‒15982.

    Article  CAS  PubMed  Google Scholar 

  28. Lei B., Tu S.-C. 1998. Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase. Biochemistry. 37, 14623‒14629.

    Article  CAS  PubMed  Google Scholar 

  29. Esimbekova E.N., Torgashina I.G., Kratasyuk V.A. 2009. Comparative study of immobilized and soluble NADH:FMN-oxidoreductase–luciferase coupled enzyme system. Biochemistry (Moscow). 74 (6), 853‒859.

    Google Scholar 

  30. Fisher A.J., Thomson T.B., Thoden J.B., Baldwin T.O., Rayment I. 1996. The 1.5 Å resolution crystal structure of bacterial luciferase in low salt conditions. J. Biol. Chem. 271, 21956‒21968.

    Article  CAS  PubMed  Google Scholar 

  31. Li C.H., Tu S.C. 2005. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase. Biochemistry. 44, 12970‒12977.

    Article  CAS  PubMed  Google Scholar 

  32. Li C.H., Tu S.C. 2005. Probing the functionalities of alfaGlu328 and alfaAla74 of Vibrio harveyi luciferase by site-directed mutagenesis and chemical rescue. Biochemistry. 44, 13866‒13873.

    Article  CAS  PubMed  Google Scholar 

  33. Tyul’kova N.A., Sandalova T.P. 1996. Comparative analysis of the effect of temperature on bacteria luciferases. Biokhimiya. 61, 275‒287.

    Google Scholar 

  34. Vorob’eva T.I., Zavoruev V.V., Mezhevikin V.V., Primakova G.A. 1982. Kinetic properties of luciferases and taxonomy of luminescent bacteria. Mikrobiologiya. 51, 420‒423.

    Google Scholar 

  35. Valkova N., Szittner R., Meighen E.A. 1999. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Biochemistry. 38, 13820‒13828.

    Article  CAS  PubMed  Google Scholar 

  36. Zavilgelsky G.B., Kotova V.Yu., Mazhul’ M.M., Manukhov I.V. 2004. The effect of Clp proteins on DnaK-dependent refolding of bacterial luciferases. Mol. Biol. (Moscow). 38 (3), 427‒433.

    Article  CAS  Google Scholar 

  37. Inlow J.K., Baldwin T.O. 2002. Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase. Biochemistry. 41, 3906‒3915.

    Article  CAS  PubMed  Google Scholar 

  38. Clark C., Sinclair J.F., Baldwin T.O. 1993. Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with native enzyme and the unfolded subunits. J. Biol. Chem. 268, 10773‒10779.

    CAS  PubMed  Google Scholar 

  39. Baldwin T.O., Ziegler M.M., Chaffotte A.F., Goldberg M.E. 1993. Contribution of folding steps involving the individual subunits of bacterial luciferase to the assembly of the active heterodimeric enzyme. J. Biol. Chem. 268, 10766‒10772.

    CAS  PubMed  Google Scholar 

  40. Ziegler M.M., Goldberg M.E., Chaffotte A.F., Baldwin T.O. 1993. Refolding of luciferase subunits from urea and assembly of the active heterodimer. J. Biol. Chem. 268, 10760‒10766.

    CAS  PubMed  Google Scholar 

  41. Fedorov A.N., Baldwin T.O. 1995. Contribution of cotranslational folding to the rate of formation native protein structure. Proc. Natl. Acad. Sci. U. S. A. 92, 1227‒1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schroder H., Langer T., Hartl F.-U., Bukau B. 1993. DnaK, DnaJ, GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137‒4144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tomoyasu T., Ogura T., Tatsuta T., Bukau B. 1998. Levels of DnaK and DnaJ provide tight control of heat shock genes expression and protein repair in Escherichia coli. Mol. Microbiol. 30, 567–581.

    Article  CAS  PubMed  Google Scholar 

  44. Hesterkamp T., Bukau B. 1998. Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in Escherichia coli. EMBO J. 17, 4818‒4828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manukhov I.V., Eroshnikov G.E., Vyssokikh M.Yu., Zavilgelsky G.B. 1999. Folding and refolding of thermolabile and thermostable bacterial luciferases: The role of DnaKJ heat-shock proteins. FEBS Lett. 448, 265‒268.

    Article  CAS  PubMed  Google Scholar 

  46. Zavilgelsky G.B., Kotova V.Yu., Mazhul’ M.M., Manukhov I.V. 2002. Role of Hsp70 (DnaK–DnaJ–GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells. Biochemistry (Moscow). 67 (9), 986‒992.

    CAS  PubMed  Google Scholar 

  47. Raviol H., Sadlish H., Rodriguez F., Mayer M.P., Bukau B. 2006. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510‒2518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Melkina O.E., Goryanin I.I., Manukhov I.V., Bara-nova A.V., Kolb V.A., Svetlov M.S., Zavilgelsky G.B. 2014. Trigger factor assists the refolding of heterodimeric but not monomeric luciferases. Biochemistry (Moscow). 79 (1), 62‒68.

    CAS  PubMed  Google Scholar 

  49. Eichhorn E., Davey C.A., Sargent D.F., Leisinger T., Richmond T.J. 2002. Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD. J. Mol. Biol. 324, 457‒468.

    Article  CAS  PubMed  Google Scholar 

  50. Li L., Liu X., Yang W., Xu W., Xu F., Wang W., Feng L., Bartlam M., Wang L., Rao Z. 2008. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN unveiling the long-chain alkane hydroxylase. J. Mol. Biol. 376, 453‒465.

    Article  CAS  PubMed  Google Scholar 

  51. Walsh C. 1985. Naturally occurring 5'-deazaflavin coenzymes: biological redox role. Acc. Chem. Res. 19, 216‒221.

    Article  Google Scholar 

  52. Shima S., Warkentin E., Grabarse W., Sordel M., Wicke M., Thauer R.K., Ermler U. 2000. Structure of coenzyme F(420)-dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J. Mol. Biol. 300, 935‒950.

    Article  CAS  PubMed  Google Scholar 

  53. Aufhammer S.W., Warkentin E., Ermler U., Hagemeier C.H., Thauer R.K., Shima S. 2005. Crystal structure of methylenetetrahydromethanopterin reductase (Mer) in complex with coenzyme F420: Architecture of the F420/FMN binding site of enzymes within the nonprolyl cis-peptide containing bacterial luciferase family. Protein Sci. 14, 1840‒1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aufhammer S.W., Warkentin E., Berk H., Shima S., Thauer R.K., Ermler U. 2004. Coenzyme binding in F420-dependent secondary alcohol dehydrogenase, a member of the bacterial luciferase family. Structure. 12, 361‒370.

    Article  CAS  PubMed  Google Scholar 

  55. Rees J.-F., de Wergifosse B., Noiser O., Dubuisson M., Jansens B., Thompson E.M. 1998. The origin of marine bioluminescence: Timing oxygen defense mechanisms into deep-sea communication tools. J. Exp. Biol. 201, 1211‒1221.

    CAS  PubMed  Google Scholar 

  56. Timmins G.S., Jackson S.K., Swartz H.M. 2001. The evolution of bioluminescent oxygen consumption as an ancient oxygen detoxification mechanism. J. Mol. Evol. 52, 321‒332.

    Article  CAS  PubMed  Google Scholar 

  57. Szpilewska H., Czyz A., Wegrzyn G. 2003. Experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress. Curr. Microbiol. 47, 379‒382.

    Article  CAS  PubMed  Google Scholar 

  58. Czyz A., Wrobel B., Wegrzyn G. 2000. Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology. 146, 283‒288.

    Article  CAS  PubMed  Google Scholar 

  59. Wegrzyn G., Czyz A., Olzewska K. 2004. Biological functions and early evolution of bacterial luminescence. Curr. Trends Microbiol. 1, 43‒49.

    CAS  Google Scholar 

  60. Cutter K.L., Allouh H.M., Salisbury V.C. 2007. Stimulation of DNA repair and increased light output in response to UV irradiation in Escherichia coli expressing lux genes. Luminescence. 22, 177‒181.

    Article  CAS  PubMed  Google Scholar 

  61. Hastings J.W., Nealson K.H. 1977. Bacterial bioluminescence. Annu. Rev. Microbiol. 31, 549‒595.

    Article  CAS  PubMed  Google Scholar 

  62. Nealson K.H., Hastings J.W. 1979. Bacterial bioluminescence: Its control and ecological significance. Microbiol. Rev. 43, 496‒518.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zarubin M., Belkin S., Ionescu M., Genin A. 2012. Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc. Natl. Acad. Sci. U. S. A. 109, 853‒857.

    Article  PubMed  Google Scholar 

  64. Visik K.L., Foster J., Doino J., McFall-Ngai M., Ruby R.G. 2000. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578‒4586.

    Article  Google Scholar 

  65. Ruby E.G., McFall-Ngai M.J. 1999. Oxygen-utilizing reactions and symbiotic colonization of the squid light organ by Vibrio fischeri. Trends Microbiol. 7, 414‒419.

    Article  CAS  PubMed  Google Scholar 

  66. Lyzen R., Wegrzyn G. 2005. Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species. Arch. Microbiol. 183, 203‒208.

    Article  CAS  PubMed  Google Scholar 

  67. Kozakiewicz J., Gajewska M., Lyzen R., Czyz A., Wegrzyn G. 2005. Bioluminescence-mediated stimulation of photoreactivation in bacteria. FEMS Microbiol. Lett. 250, 105‒110.

    Article  CAS  PubMed  Google Scholar 

  68. Walker E.L., Bose J.L., Stabb E.V. 2006. Photolyase confers resistance to UV light but does not contribute to the symbiotic benefit of bioluminescence in Vibrio fischeri ES114. Appl. Environ. Microbiol. 72, 6600‒6606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zavilgelsky G.B., Melkina O.E., Kotova V.Yu., Konopleva M.N., Manukhov I.V., Pustovoit K.S. 2015. Photoreactivating activity of bioluminescence: Repair of UV-damaged Escherichia coli DNA proceeds with assistance of the lux genes of marine bacteria. Biophysics (Moscow). 60 (5), 739–744.

    Article  CAS  Google Scholar 

  70. Melkina O.E., Kotova V.Yu., Konopleva M.N., Manukhov I.V., Pustovoit K.S., Zavilgelsky G.B. 2015. Photoreactivation of UV-exposed Escherichia coli K12 AB1886 uvrA6 via luminescence of Photobacterium leiognathi luciferase. Mol. Biol. (Moscow). 49 (6), 928‒932.

    Article  CAS  Google Scholar 

  71. Bourgois J.J., Sluse F.E., Baguet F., Mallefet J. 2001. Kinetics of light emission and oxygen consumption by bioluminescent bacteria. J. Bioenerg. Biomembr. 33, 353‒363.

    Article  CAS  PubMed  Google Scholar 

  72. Weis V.M., Small A.L., McFall-Ngai M.J. 1996. A peroxidase related to the mammalian antimicrobial protein myeloperoxydase in the Euprymna–Vibrio mutualism. Proc. Natl. Acad. Sci. U. S. A. 93, 13683‒13688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hastings J.W. 1983. Biological diversity, chemical mechanisms and the evolutionary origin of bioluminescent systems. J. Mol. Evol. 19, 309‒317.

    Article  CAS  PubMed  Google Scholar 

  74. Hastings J.W. 2012. Bioluminescence. In: Cell Physiology Source Book: Essentials of Membrane Biophysics. Ed. Kaneshiro E. Elsevier, pp. 925–948. doi 10.1016/B978-0-12-387738-3.00052-4

  75. Nealson K.H., Hastings J.W. 1992. The luminous bacteria. In: The Prokaryotes. Eds. Balows A., Truper H.G., Dworkin M., Harder W., Schleifer K.-N. Berlin: Springer, pp. 625‒639.

  76. Dunlop P. 2014. Biochemistry and genetics of bacterial bioluminescence. Adv. Biochem. Engin. Biotechnol. 144, 37‒64.

    Google Scholar 

  77. Pfeiffer T., Schuster S., Banhoeffer D. 2001. Cooperation and competition in the evolution of ATP-producing pathways. Science. 292, 504‒507.

    Article  CAS  PubMed  Google Scholar 

  78. Eberhard A., Hinton J.P., Zuck R.M. 1979. Luminous bacteria synthesize luciferase anaerobically. Arch. Microbiol. 121, 277‒282.

    Article  CAS  Google Scholar 

  79. Makemson J.C., Hastings J.W. 1982. Iron represses bioluminescence in Vibrio harveyi. Curr. Microbiol. 7, 181‒186.

    Article  CAS  Google Scholar 

  80. Haygood M.G., Nealson K.H. 1985. Mechanisms of iron regulation of luminescence in Vibrio fischeri. J. Bacteriol. 162, 209‒216.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shostov A.A., Liu X., Ser Z., Cluntun A.A., Hung Y.P., Huang L., Kim D., Lee A., Yellen G., Albeck J.G., Locasale J.W. 2014. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. eLife. 3 (1), e03342. doi 07554/eLife.03342

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Zavilgelsky.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavilgelsky, G.B., Shakulov, R.S. Mechanisms and Origin of Bacterial Biolumenescence. Mol Biol 52, 812–822 (2018). https://doi.org/10.1134/S0026893318060183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318060183

Keywords:

Navigation