Skip to main content
Log in

Small Noncoding 4.5SH and 4.5SI RNAs and Their Binding to Proteins

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The functions of small noncoding RNAs 4.5SH and 4.5SI found in murine-like rodents are unclear. These RNAs synthesized by RNA polymerase III are widely expressed in rodent organs and tissues. Using crosslinking assays, it was shown that approximately half of all 4.5SI and 4.5SH RNA molecules were bound to proteins provisionally called X and Y, respectively. An immunoprecipitation experiment showed that both these RNAs were associated with the La protein, which did not crosslink to them. The termini of 4.5SI RNA form a long duplex stem, which makes the molecule more stable than 4.5SH RNA. Modification of the 5'-end sequence destructing the stem of 4.5SI RNA altered its protein-binding properties; after the 3'-end sequence was changed to the complementary, both the stem structure and the RNA binding to protein X were restored. Presumably, this protein plays a role in increasing the half-life of 4.5SI RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Makarova Yu.A., Kramerov D.A. 2007. Noncoding RNAs. Biochemistry (Moscow). 72, 1127–1148.

    Google Scholar 

  2. Jandura A., Krause H.M. 2017. The new RNA world: Growing evidence for long noncoding RNA functionality. Trends Genet. 33, 665–676.

    Article  CAS  PubMed  Google Scholar 

  3. Harada F., Kato N. 1980. Nucleotide sequences of 4.5S RNAs associated with poly(A)-containing RNAs of mouse and hamster cells. Nucleic Acids Res. 8, 1273–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ro-Choi T.S., Redy R., Henning D., Takano T., Taylor C.W., Busch H. 1972. Nucleotide sequence of 4.5S ribonucleic acid of Novikoff hepatoma cell nuclei. J. Biol. Chem. 247, 3205–3222.

    CAS  PubMed  Google Scholar 

  5. Ishida K., Miyauchi K., Kimura Y., Mito M., Okada S., Suzuki T., Nakagawa S. 2015. Regulation of gene expression via retrotransposon insertions and the noncoding RNA 4.5S RNAH. Genes Cells. 20, 887–901.

    Article  CAS  PubMed  Google Scholar 

  6. Tatosyan K.A., Koval A.P., Gogolevskaya I.K., Kra-merov D.A. 2017. 4.5SI and 4.5SH RNAs: Expression in various rodent organs and abundance and distribution in the cell. Mol. Biol. (Moscow). 51 (1), 122–129.

    Article  CAS  Google Scholar 

  7. Gogolevskaya I.K., Kramerov D.A. 2002. Evolutionary history of 4.5SI RNA and indication that it is functional. J. Mol. Evol. 54, 354–364.

    Article  CAS  PubMed  Google Scholar 

  8. Gogolevskaya I.K., Koval A.P., Kramerov D.A. 2005. Evolutionary history of 4.5SH RNA. Mol. Biol. Evol. 22, 1546–1554.

    Article  CAS  PubMed  Google Scholar 

  9. Kramerov D.A., Vassetzky N.S. 2011. SINEs. Wiley Interdisc. Rev. RNA. 2, 772–786.

    Article  CAS  Google Scholar 

  10. Krayev A.S., Markusheva T.V., Kramerov D.A., Ryskov A.P., Skryabin K.G., Bayev A.A., Georgiev G.P. 1982. Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing. Nucleic Acids Res. 10, 7461–7475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quentin Y. 1994. A master sequence related to a free left Alu monomer (FLAM) at the origin of the B1 family in rodent genomes. Nucleic Acids Res. 22, 2222–2227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Serdobova I.M., Kramerov D.A. 1998. Short retroposons of the B2 superfamily: Evolution and application for the study of rodent phylogeny. J. Mol. Evol. 46, 202–214.

    Article  CAS  PubMed  Google Scholar 

  13. Gogolevskaya I.K., Kramerov D.A. 2010. 4.5SI RNA genes and the role of their 5'-flanking sequences in the gene transcription. Gene. 451, 32–37.

    Article  CAS  PubMed  Google Scholar 

  14. Koval A.P., Gogolevskaya I.K., Tatosyan K.A., Kra-merov D.A. 2015. A 5'-3' terminal stem in small non-coding RNAs extends their lifetime. Gene. 555, 464–468.

    Article  CAS  PubMed  Google Scholar 

  15. Tatosyan K.A., Kramerov D.A. 2016. Heat shock increases lifetime of a small RNA and induces its accumulation in cells. Gene. 587, 33–41.

    Article  CAS  PubMed  Google Scholar 

  16. Koval A.P., Gogolevskaya I.K., Tatosyan K.A., Kra-merov D.A. 2012. Complementarity of end regions increases the lifetime of small RNAs in mammalian cells. PLoS One. 7, e44157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reddy R., Henning D., Tan E., Busch H. 1983. Identification of a La protein binding site in a RNA polymerase III transcript (4.5 I RNA). J. Biol. Chem. 258, 8352–8356.

    CAS  PubMed  Google Scholar 

  18. Leinwand L.A., Wydro R.M., Nadal-Ginard B. 1982. Small RNA molecules related to the Alu family of repetitive DNA sequences. Mol. Cell. Biol. 2, 1320–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maraia R.J., Intine R.V. 2002. La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expression. 10, 41–57.

    CAS  PubMed  Google Scholar 

  20. Kobayashi S., Goto S., Anzai K. 1991. Brain-specific small RNA transcript of the identifier sequences is present as a 10S ribonucleoprotein particle. J. Biol. Chem. 266, 4726–4730.

    CAS  PubMed  Google Scholar 

  21. Patel S.B., Bellini M. 2008. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Res. 36, 6482–6493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiss T., Fayet-Lebaron E., Jady B.E. 2010. Box H/ACA small ribonucleoproteins. Mol. Cell. 37, 597–606.

    Article  PubMed  Google Scholar 

  23. Bjork P., Wieslander L. 2017. Integration of mRNP formation and export. Cell. Mol. Life Sci. 74, 2875–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kohler A., Hurt E. 2007. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773.

    Article  CAS  PubMed  Google Scholar 

  25. Maraia R.J., Mattijssen S., Cruz-Gallardo I., Conte M.R. 2017. The La and related RNA-binding proteins (LARPs): Structures, functions, and evolving perspectives. Wiley Interdisc Rev. RNA. 8, e1430.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kramerov.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatosyan, K.A., Koval, A.P. & Kramerov, D.A. Small Noncoding 4.5SH and 4.5SI RNAs and Their Binding to Proteins. Mol Biol 52, 899–904 (2018). https://doi.org/10.1134/S002689331806016X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331806016X

Keywords:

Navigation