Skip to main content
Log in

The Rice OsDUF810 Family: OsDUF810.7 May be Involved in the Tolerance to Salt and Drought

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

With the advance of sequencing technology, the number of sequenced plant genomes has been rapidly increasing. However, understanding of the gene function in these sequenced genomes lags far behind; as a result, many coding plant sequences in public databases are annotated as proteins with domains of unknown function (DUF). Function of a protein family DUF810 in rice is not known. In this study, we analysed seven members of OsDU810 (OsDUF810.1–OsDUF810.7) family with three distinct motifs in rice Nipponbare. By phylogenetic analysis, OsDUF810 proteins fall into three major groups (I, II, III). Expression patterns of the seven corresponding OsDUF810 protein-encoding genes in 15 different rice tissues vary. Under drought, salt, cold and heat stress conditions and ABA treatment, the expression of OsDUF810.7 significantly increases. Overexpression of this protein in E. coli lead to a significant enhancement of catalase (CAT) and peroxidase (POD) activities, and improved bacterial resistance to salt and drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

CAT:

catalase

DUF:

the domain of unknown function

POD:

peroxidase

SOD:

superoxide dismutase

ROS:

reactive oxygen species

References

  1. Boyer J.S. 1982. Plant productivity and environment. Science. 218, 443–448.

    Article  PubMed  CAS  Google Scholar 

  2. Bohnert H.J., Gong Q., Li P., Ma S. 2006. Unraveling abiotic stress tolerance mechanisms: Getting genomics going. Curr. Opin. Plant Biol. 9, 180–188.

    Article  PubMed  CAS  Google Scholar 

  3. Serrano R., Rodriguez-Navarro A. 2001. Ion homeostasis during salt stress in plants. Curr. Opin. Cell Biol. 13, 399–404.

    Article  PubMed  CAS  Google Scholar 

  4. Park S.Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F., Alfred S.E., Bonetta D., Finkelstein R., Provart N.J., Desveaux D., et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 324, 1068–1071.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Kwak J.M., Mori I.C., Pei Z.M., Leonhardt N., Torres M.A., Dangl J.L., Bloom R.E., Bodde S., Jones J.D., Schroeder J.I. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22, 2623–2633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sutter J.U., Sieben C., Hartel A., Eisenach C., Thiel G., Blatt M.R. 2007. Abscisic acid triggers the endocytosis of the arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr. Biol. 17, 1396–1402.

    Article  PubMed  CAS  Google Scholar 

  7. Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K. 2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124, 509–525.

    Article  PubMed  CAS  Google Scholar 

  8. Bateman A., Coggill P., Finn R.D. 2010. DUFs: families in search of function. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66, 1148–1152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bischoff V., Nita S., Neumetzler L., Schindelasch D., Urbain A., Eshed R., Persson S., Delmer D., Scheible W.R. 2010. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol. 153, 590–602.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cao X., Yang K.Z., Xia C., Zhang X.Q., Chen L.Q., Ye D. 2010. Characterization of DUF724 gene family in Arabidopsis thaliana. Plant Mol. Biol. 72, 61–73.

    Article  PubMed  CAS  Google Scholar 

  11. Jones-Rhoades M.W., Borevitz J.O., Preuss D. 2007. Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet. 3, 1848–1861.

    Article  PubMed  CAS  Google Scholar 

  12. He X., Hou X., Shen Y., Huang Z. 2011. TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Lett. 585, 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  13. Kim S.J., Ryu M.Y., Kim W.T. 2012. Suppression of Arabidopsis RING-DUF1117 E3 ubiquitin ligases, AtRDUF1 and AtRDUF2, reduces tolerance to ABAmediated drought stress. Biochem. Biophys. Res. Commun. 420, 141–147.

    Article  PubMed  CAS  Google Scholar 

  14. Luo C., Guo C., Wang W., Wang L., Chen L. 2014. Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice. Plant Cell Rep. 33, 323–336.

    Article  PubMed  CAS  Google Scholar 

  15. Wang L., Shen R., Chen L.T., Liu Y.G. 2014. Characterization of a novel DUF1618 gene family in rice. J. Integr. Plant Biol. 56, 151–158.

    Article  PubMed  CAS  Google Scholar 

  16. Guo C., Luo C., Guo L., Li M., Guo X., Zhang Y., Wang L., Chen L. 2016. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. J. Integr. Plant Biol. 58, 492–502.

    Article  PubMed  CAS  Google Scholar 

  17. Letunic I., Doerks T., Bork P. 2014. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Res. 43, 257–260.

    Article  CAS  Google Scholar 

  18. Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., Noble W.S. 2009. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 37, W202–208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., Thompson J.D., Higgins D.G. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  21. Li L., Liu C., Lian X. 2010. Gene expression profiles in rice roots under low phosphorus stress. Plant Mol. Biol. 72, 423–432.

    Article  PubMed  CAS  Google Scholar 

  22. Li L., Ye T., Gao X., Xu J., Xie C., Zhu J., Deng X., Wang P., Xu Z. 2017. Molecular characterization and functional analysis of the OsPsbR gene family in rice. Mol. Genet. Genomics. 292, 271–281.

    Article  PubMed  CAS  Google Scholar 

  23. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  24. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  25. LaVallie E.R., DiBlasio E.A., Kovacic S., Grant K.L., Schendel P.F., McCoy J.M. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology. 11, 187–193.

    PubMed  CAS  Google Scholar 

  26. Liang Y., Chen Q., Liu Q., Zhang W., Ding R. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of saltstressed barley (Hordeum vulgare L.). J. Plant Physiol. 160, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  27. Wang X., Shi X., Hao B., Ge S., Luo J. 2005. Duplication and DNA segmental loss in the rice genome: Implications for diploidization. New Phytol. 165, 937–946.

    Article  PubMed  CAS  Google Scholar 

  28. Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47, 141–153.

    Article  PubMed  CAS  Google Scholar 

  29. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33, 751–763.

    Article  PubMed  CAS  Google Scholar 

  30. Miller G., Shulaev V., Mittler R. 2008. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133, 481–489.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-J. Xu.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 4, pp. 567–575.

The text was submitted by the author(s) in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LH., Lv, MM., Li, X. et al. The Rice OsDUF810 Family: OsDUF810.7 May be Involved in the Tolerance to Salt and Drought. Mol Biol 52, 489–496 (2018). https://doi.org/10.1134/S002689331804012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331804012X

Keywords

Navigation