Skip to main content
Log in

Bispecific Antibodies: Formats and Areas of Application

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Bispecific antibodies capable of simultaneously binding two targets have been studied for many years with a view to their implementation in clinical practice. Unique biological and pharmacological properties, as well as the diversity of their formats, make it possible to consider bispecific antibodies as promising agents for use in various procedures: from visualization of intracellular processes to targeted anticancer therapy. Bispecific antibodies help to determine more precisely the therapeutic target, thereby increasing the efficiency of therapy and reducing the probability of side effects. The present review describes the main formats of bispecific antibodies, methods for their generation, and possibilities for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BsAb:

bispecific antibodies

scFv:

single chain antibody variable fragment

MICA:

major histocompatibility complex class I chain-related protein A

ММР:

matrix metalloproteinases

TNF:

tumor necrosis factor

HER2 and HER3:

human epidermal growth factor receptors

RA:

rheumatoid arthritis

HCC:

hepatocellular carcinoma

References

  1. Nisonoff A., Rivers M.M. 1961. Recombination of a mixture of univalent antibody fragments of different specificity. Arch. Biochem. Biophys. 93, 460–467.

    Article  PubMed  CAS  Google Scholar 

  2. Kontermann R.E. 2005. Recombinant bispecific antibodies for cancer therapy. Acta Pharmacol. Sin. 26 (1), 1–9.

    Article  PubMed  CAS  Google Scholar 

  3. Milstein C., Cuello A.C. 1983. Hybrid hybridomas and their use in immunohistochemistry. Nature. 305 (5934), 537–540.

    Article  PubMed  CAS  Google Scholar 

  4. Suresh M.R., Cuello A.C., Milstein C. 1986. Advantages of bispecific hybridomas in one-step immunocytochemistry and immunoassays. Proc. Natl. Acad. Sci. U. S. A. 83 (20), 7989–7993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Reinagel M.L., Taylor R.P. 2000. Transfer of immune complexes from erythrocyte CR1 to mouse macrophages. J. Immunol. 164 (4), 1977–1985.

    Article  PubMed  CAS  Google Scholar 

  6. Helfrich W., Bremer E. 2014. Bifunctional antibody fragment-based fusion proteins for the targeted elimination of pathogenic T-cell subsets. In: Systemic Lupus Erythematosus: Methods and Protocols. Methods in Molecular Biology, vol. 1134. Eds. Eggleton P., Ward F.J. New York: Humana Press, pp. 79–93.

    Google Scholar 

  7. Bremer E., Abdulahad W.H., de Bruyn M., et al. 2011. Selective elimination of pathogenic synovial fluid T-cells from rheumatoid arthritis and juvenile idiopathic arthritis by targeted activation of Fas-apoptotic signaling. Immunol. Lett. 138, 161–168.

    Article  PubMed  CAS  Google Scholar 

  8. Farrington G.K., Caram-Salas N., Haqqani A.S., et al. 2014. A novel platform for engineering blood-brain barrier-crossing bispecific biologics. FASEB J. 28, 4764–4778.

    Article  PubMed  CAS  Google Scholar 

  9. Stanimirovic D., Kemmerich K., Haqqani A.S., Farrington G.K. 2014. Engineering and pharmacology of blood–brain barrier-permeable bispecific antibodies. Adv. Pharmacol. 71, 301–335.

    Article  PubMed  CAS  Google Scholar 

  10. Nettelbeck D.M., Rivera A.A., Kupsch J., et al. 2004. Retargeting of adenoviral infection to melanoma: Combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA. Int. J. Cancer. 108, 136–145.

    Article  PubMed  CAS  Google Scholar 

  11. Bachanova V., Frankel A.E., Cao Q., et al. 2015. Phase 1 study of a bispecific ligand-directed toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies. Clin. Cancer Res. 21 (6), 1267–1272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cheal S.M., Yoo B., Boughdad S., et al. 2014. Evaluation of glycodendron and synthetically modified dextran clearing agents for multistep targeting of radioisotopes for molecular imaging and radioimmunotherapy. Mol. Pharmaceutics. 11 (2), 400–416.

    Article  CAS  Google Scholar 

  13. Stamova S., Feldmann A., Cartellieri M., et al. 2012. Generation of single-chain bispecific green fluorescent protein fusion antibodies for imaging of antibodyinduced T cell synapses. Anal. Biochem. 423, 261–268.

    Article  PubMed  CAS  Google Scholar 

  14. Chames P., Baty D. 2009. Bispecific antibodies for cancer therapy. mAbs. 1 (6), 539–547. doi 10.4161/mabs.1.6.10015

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee R.J., Fang Q., Davol P.A., et al. 2007. Antibody targeting of stem cells to infarcted myocardium. Stem Cells. 25, 712–717.

    Article  PubMed  CAS  Google Scholar 

  16. Spiess C., Zhai Q., Carter P.J. 2015. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol. 67 (2), 95–106.

    Article  PubMed  CAS  Google Scholar 

  17. Yang F., Wen W., Qin W. 2016. Bispecific antibodies as a development platform for new concepts and treatment strategies. Int. J. Mol. Sci. 18 (1), 48.

    Article  PubMed Central  CAS  Google Scholar 

  18. Schaefer W., Völger H.R., Lorenz S., et al. 2016. Heavy and light chain pairing of bivalent quadroma and knobs-into-holes antibodies analyzed by UHR-ESIQTOF mass spectrometry. mAbs. 8 (1), 49–55. doi 10.1080/19420862.2015.1111498

    Article  PubMed  CAS  Google Scholar 

  19. Ridgway J.B., Presta L.G., Carter P. 1996. “Knobsinto-holes” engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9 (7), 617–621.

    Article  PubMed  CAS  Google Scholar 

  20. Von Kreutenstein T.S., Escobar-Carbrera E., Lario P.I., et al. 2013. Improving biophysical properties of a bispecific antibody scaffold to aid developability: Quality by molecular design. mAbs. 5, 646–654.

    Article  Google Scholar 

  21. Davis J.H., Aperlo C., Li Y., Kurosawa E., et al. 2010. SEEDbodies: Fusion proteins based on strandexchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng., Des. Sel. 23, 195–202.

    Article  CAS  Google Scholar 

  22. Kontermann R.E. 2012. Dual targeting strategies with bispecific antibodies. mAbs. 4, 182–197.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spasevska I., Duong M.N., Klein C., Dumontet C. 2015. Advances in bispecific antibodies engineering: Novel concepts for immunotherapies. J. Blood Disord. Transfus. 6, 243.

    Google Scholar 

  24. Schaefer W., Regula J.T., Bähner M., et al. 2011. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl. Acad. Sci. U. S. A. 108, 11187–11192.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lewis S.M., Wu X., Pustilnik A., et al. 2014. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat. Biotechnol. 32, 191–198.

    Article  PubMed  CAS  Google Scholar 

  26. Castoldi R., Jucknischke U., Pradel L.P., et al. 2012. Molecular characterization of novel trispecific ErbBcMet-IGF1R antibodies and their antigen-binding properties. Protein Eng., Des. Sel. 25, 551–560.

    Article  CAS  Google Scholar 

  27. Schanzer J., Jekle A., Nezu J., et al. 2011. Development of tetravalent, bispecific CCR5 antibodies with antiviral activity against CCR5 monoclonal antibody-resistant HIV-1 strains. Antimicrob. Agents Chemother. 55 (5), 2369–2378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Brockmann E.C., Cooper M., Stromsten N., et al. 2005. Selecting for antibody scFv fragments with improved stability using phage display with denaturation under reducing conditions. J. Immunol. Methods, 296, 159–170.

    Article  PubMed  CAS  Google Scholar 

  29. Miller B.R., Demarest S.J., Lugovskoy A., et al. 2010. Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng., Des. Sel. 23 (7), 549–557.

    Article  CAS  Google Scholar 

  30. Manzke O., Tesch H., Diehl V., Bohlen H. 1997. Single-step purification of bispecific monoclonal antibodies for immunotherapeutic use by hydrophobic interaction chromatography. J. Immunol. Methods. 208 (1), 65–73.

    Article  PubMed  CAS  Google Scholar 

  31. Müller-Späth Th., Ulmer N., Aumann L., et al. 2013. Purifying common light-chain bispecific antibodies: A twin-column, countercurrent chromatography platform process. BioProcess Int. 11 (5), 36–45.

    Google Scholar 

  32. Kontermann R.E., Brinkmann U. 2015. Bispecific antibodies. Drug Discovery Today. 20 (7), 838–847.

    Article  PubMed  CAS  Google Scholar 

  33. Eigenbrot C., Fuh G. 2013. Two-in-one antibodies with dual action Fabs. Curr. Opin. Chem. Biol. 17 (3), 400–405.

    Article  PubMed  CAS  Google Scholar 

  34. Wu C., Ying H., Bose S., et al. 2009. Molecular construction and optimization of anti-human IL-1α/β dual variable domain immunoglobulin (DVD-IgTM) molecules. mAbs. 1 (4), 339–347.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Labrijn A.F., Meesters J.I., Priem P., et al. 2014. Controlled Fab-arm exchange for the generation of stable bispecific IgG1. Nat. Protoc. 9 (10), 2450–2463.

    Article  PubMed  CAS  Google Scholar 

  36. Fischer N., Elson G., Magistrelli G., et al. 2015. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat. Commun. 6, 6113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Le Gall F., Kipriyanov S.M., Moldenhauer G., Little M. 1999. Di-, tri-and tetrameric single chain Fv antibody fragments against human CD19: Effect of valency on cell binding. FEBS Lett. 453 (1–2), 164–168.

    Article  PubMed  Google Scholar 

  38. Wu M.-R., Zhang T., Gacerez A.T., et al. 2015. B7H6-specific bispecific T cell engagers (BiTEs) lead to tumor elimination and host anti-tumor immunity. J. Immunol. 194 (11), 5305–5311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bargou R., Leo E., Zugmaier G., et al. 2008. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 321, 974–977.

    Article  PubMed  CAS  Google Scholar 

  40. Moore P.A., Zhang W., Rainey G.J., et al. 2011. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 117 (17), 4542–4551.

    Article  PubMed  CAS  Google Scholar 

  41. Sharkey R.M., Rossi E.A., McBride W.J., et al. 2010. Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin. Nucl. Med. 40 (3), 190–203. doi 10.1053/j.semnuclmed.2009.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rossi E.A., Rossi D.L., Cardillo T.M., et al. 2011. Preclinical studies on targeted delivery of multiple IFN-α2b to HLA-DR in diverse hematologic cancers. Blood. 118, 1877–1884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bodet-Milin C., Ferrer L., Rauscher A., et al. 2015. Pharmacokinetics and dosimetry studies for optimization of pretargeted radioimmunotherapy in CEAexpressing advanced lung cancer patients. Front. Med. (Lausanne). 2, 84.

    PubMed  PubMed Central  Google Scholar 

  44. Deev S.M., Lebedenko E.N. 2009. Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae. 1, 32–50.

    Google Scholar 

  45. Revets H., Baetselier P.D., Muyldermans S. 2005. Nanobodies as novel agents for cancer therapy. Expert Opin. Biol. Ther. 5 (1), 111–124.

    Article  PubMed  CAS  Google Scholar 

  46. Conrath K.E., Lauwereys M., Wyns L., Muyldermans S. 2001. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J. Biol. Chem. 276 (10), 7346–7350.

    Article  CAS  Google Scholar 

  47. Marschall A.L.J., Dübel S., Böldicke T. 2015. Specific in vivo knockdown of protein function by intrabodies. mAbs. 7 (6), 1010–1035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Jendreyko N., Popkov M., Rader C., Barbas C.F. 3rd. 2005. Phenotypic knockout of VEGF-R2 and Tie-2 with an intradiabody reduces tumor growth and angiogenesis in vivo. Proc. Natl. Acad. Sci. U. S. A. 102, 8293–8298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Huston J.S., Levinson D., Mudgett-Hunter M., et al. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin singlechain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 85, 5879–5883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hust M., Jostock T., Menzel C., et al. 2007. Single chain Fab (scFab) fragment. BMC Biotechnol. 7, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Colby D.W., Garg P., Holden T., et al. 2004. Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J. Mol. Biol. 342, 901–912.

    Article  PubMed  CAS  Google Scholar 

  52. Kim D.S., Song H.N., Nam H.J., et al. 2014. Directed evolution of human heavy chain variable domain (VH) using in vivo protein fitness filter. PLoS One. 9, e98178.

    Article  CAS  Google Scholar 

  53. Fishburn C.S. 2008. The pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics. J. Pharm. Sci. 97 (10), 4167–4183.

    Article  PubMed  CAS  Google Scholar 

  54. Merlot A.M., Kalinowski D.S., Kovacevic Z., et al. 2015. Making a case for albumin—a highly promising drug-delivery system. Future Med. Chem. 7 (5), 553–556.

    Article  PubMed  CAS  Google Scholar 

  55. Fan G., Wang Z., Hao M., Li J. 2015. Bispecific antibodies and their applications. J. Hematol. Oncol. 8, 130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Taki S., Kamada H., Inoue M., et al. 2015. A novel bispecific antibody against human CD3 and ephrin receptor A10 for breast cancer therapy. PLoS One. 10 (12), e0144712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gschwind A., Fischer O.M., Ullrich A. 2004. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer. 4 (5), 361–370.

    Article  PubMed  CAS  Google Scholar 

  58. Adams G.P., Weiner L.M. 2005. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  59. Sharkey R.M., Goldenberg D.M. 2006. Targeted therapy of cancer: New prospects for antibodies and immunoconjugates. CA Cancer J. Clin. 56, 226–243.

    Article  PubMed  Google Scholar 

  60. Asano R., Shimomura I., Konno S., et al. 2014. Rearranging the domain order of a diabodybased IgG-like bispecific antibody enhances its antitumor activity and improves its degradation resistance and pharmacokinetics. mAbs. 6 (5), 1243–1254.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shen Y., Zeng L., Novosyadlyy R., et al. 2015. A bifunctional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. mAbs. 7 (5), 931–945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lu D., Zhang H., Ludwig D., et al. 2004. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J. Biol. Chem. 279, 2856–2865.

    Article  PubMed  CAS  Google Scholar 

  63. Rubinfeld B., Upadhyay A., Clark S.L., et al. 2006. Identification and immunotherapeutic targeting of antigens induced by chemotherapy. Nat. Biotechnol. 24, 205–209.

    Article  PubMed  CAS  Google Scholar 

  64. Lugovskoy A.A. 2017. Engineering antibodies as drugs: Principles and practice. Mol. Biol. (Moscow). 51 (6), 772–781.

    Article  CAS  Google Scholar 

  65. Breton C.S., Nahimana A., Aubry D., et al. 2014. A novel anti-CD19 monoclonal antibody (GBR 401) with high killing activity against B cell malignancies. J. Hematol. Oncol. 7 (1), 33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mullard A. 2014. FDA approves first bispecific. Nat. Rev. Drug Discov. 14 (1), 7.

    Article  CAS  Google Scholar 

  67. Queudeville M., Handgretinger R., Ebinger M. 2017. Immunotargeting relapsed or refractory precursor Bcell acute lymphoblastic leukemia: Role of Blinatumomab. OncoTargets Ther. 10, 3567–3578.

    Article  Google Scholar 

  68. Topp M.S., Gokbuget N., Stein A.S. 2015. Safety and activity of Blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66.

    Article  PubMed  CAS  Google Scholar 

  69. Kantarjian H., Stein A., Gokbuget N. 2017. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bellone S., Black J., English D.P., et al. 2016. Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE®), is highly active against primary uterine serous papillary carcinoma cell lines in vitro. Am. J. Obstet. Gynecol. 214 (1), 99.e1–99.e8.

    Article  CAS  Google Scholar 

  71. Leong S.R., Sukumaran S., Hristopoulos M., et al. 2017. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood. 129 (5), 609–618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wu J., Fu J., Zhang M., Liu D. 2015. AFM13: A firstin-class tetravalent bispecific anti-CD30/CD16A antibody for NK cell-mediated immunotherapy. J. Hematol. Oncol. 8 (1), 96.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang T., Sun F., Xie W., et al. 2016. A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett. 372, 166–178.

    Article  PubMed  CAS  Google Scholar 

  74. Hirschhaeuser F., Leidig T., Rodday B., et al. 2009. Test system for trifunctional antibodies in 3D MCTS culture. J. Biomol. Screening. 14 (8), 980–990.

    Article  CAS  Google Scholar 

  75. Riechelmann H., Wiesneth M., Schauwecker P., et al. 2007. Adoptive therapy of head and neck squamous cell carcinoma with antibody coated immune cells: A pilot clinical trial. Cancer Immunol. Immunother. 56, 1397–1406.

    Article  PubMed  CAS  Google Scholar 

  76. Stanglmaier M., Faltin M., Ruf P., et al. 2008. Bi20 (FBTA05), a novel trifunctional bispecific antibody (anti-CD20 × anti-CD3), mediates efficient killing of B-cell lymphoma cells even with very low CD20 expression levels. Int. J. Cancer. 123, 1181–1189

    Article  PubMed  CAS  Google Scholar 

  77. Lindhofer H., Hess J., Ruf P. 2011. Trifunctional Triomab ® antibodies for cancer therapy. In: Bispecific Antibodies. Ed. Kontermann R.E. Berlin: Springer-Verlag, 289–312.

    Book  Google Scholar 

  78. Seimetz D., Lindhofer H., Bokemeyer C. 2010. Development and approval of the trifunctional antibody Catumaxomab (anti-EpCAM × anti-CD3) as a targeted cancer immunotherapy. Cancer Treat. Rev. 36 (6), 458–467.

    Article  PubMed  CAS  Google Scholar 

  79. Ruf P., Jager M., Ellwart J., et al. 2004. Two new trifunctional antibodies for the therapy of human malignant melanoma. Int. J. Cancer. 108, 725–732.

    Article  PubMed  CAS  Google Scholar 

  80. Jäger M., Schoberth A., Ruf P., et al. 2009. The trifunctional antibody Ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Res. 69, 4270–4276.

    Article  PubMed  CAS  Google Scholar 

  81. Heiss M.M., Murawa P., Koralewski P., et al. 2010. The trifunctional antibody Catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int. J. Cancer. 27 (9), 2209–2221.

    Article  CAS  Google Scholar 

  82. Kiewe P., Hasmüller S., Kahlert S., et al. 2006. Phase I trial of the trifunctional anti-HER2 × anti-CD3 antibody Ertumaxomab in metastatic breast cancer. Clin. Cancer Res. 12 (10), 3085–3091.

    Article  PubMed  CAS  Google Scholar 

  83. Stanglmaier M., Faltin M., Ruf P., et al. 2008. Bi20 (fBTA05), a novel trifunctional bispecific antibody (anti-CD20 × anti-CD3), mediates efficient killing of B-cell lymphoma cells even with very low CD20 expression levels. Int. J. Cancer. 123 (5), 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  84. Koristka S., Cartellieri M., Theil A., et al. 2012. Retargeting of human regulatory T cells by single-chain bispecific antibodies. J. Immunol. 188, 1551–1558.

    Article  PubMed  CAS  Google Scholar 

  85. Lahdenranta J., Paragas V., Kudla A.J., et al. 2013. Preclinical activity of MM-111, a bispecific ErbB2/ErbB3 antibody in previously treated ErbB2-positive gastric and gastroesophageal junction cancer. J. Clin. Oncol. 31 (Suppl. 4), 48. doi 10.1200/jco.2013.31.4_suppl.48

    Article  Google Scholar 

  86. Fitzgerald J.B., Johnson B.W., Baum J., et al. 2014. MM-141, an IGF-IR-and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors. Mol. Cancer Ther. 13 (2), 410–425.

    Article  PubMed  CAS  Google Scholar 

  87. Reid A., Vidal L., Shaw H., de Bono J. 2007. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur. J. Cancer. 43, 481–489.

    Article  PubMed  CAS  Google Scholar 

  88. Guo X.-F., Zhu X.-F., Yang W.-C., et al. 2014. An EGFR/HER2-bispecific and enediyne-energized fusion protein shows high efficacy against esophageal cancer. PLoS One. 9 (3), e92986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Geyer C.E., Forster J., Lindquist D., et al. 2006. Lapatinib plus Capecitabine for HER2-positive advanced breast cancer. N. Eng. J. Med. 355, 2733–2743.

    Article  CAS  Google Scholar 

  90. Ding L., Tian C., Feng S., et al. 2015. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics. 5 (4), 378–398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Biel N.M., Siemann D.W. 2016. Targeting the angiopoietin-2/Tie-2 axis in conjunction with VEGF signal interference. Cancer Lett. 380 (2), 525–533.

    Article  PubMed  CAS  Google Scholar 

  92. Baker L.C., Boult J.K., Thomas M., et al. 2016. Acute tumour response to a bispecific Ang-2-VEGF-A antibody: Insights from multiparametric MRI and gene expression profiling. Br. J. Cancer. 115 (6), 691–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. DiGiandomenico A., Keller A.E., Gao C., et al. 2014. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci. Transl. Med. 6 (262), 262ra155.

    Article  PubMed  CAS  Google Scholar 

  94. Rossotti M.A., González-Techera A., Guarnaschelli J., et al. 2015. Increasing the potency of neutralizing single-domain antibodies by functionalization with a CD11b/CD18 binding domain. mAbs. 7 (5), 820–828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sun M., Pace C.S, Yao X., et al. 2014. Rational design and characterization of the novel, broad and potent bispecific HIV-1 neutralizing antibody iMabm36. J. Acquired Immune Defic. Syndr. 66 (5), 473–483.

    Article  CAS  Google Scholar 

  96. Jiang X., Jia Q., Lu L., et al. 2016. A novel bispecific peptide HIV-1 fusion inhibitor targeting the N-terminal heptad repeat and fusion peptide domains in gp41. Amino Acids. 48, 2867–2873.

    Article  PubMed  CAS  Google Scholar 

  97. Chen W., Feng Y., Prabakaran P., et al. 2014. Exceptionally potent and broadly cross-reactive, bispecific multivalent HIV-1 inhibitors based on single human CD4 and antibody domains. J. Virol. 88 (2), 1125–1139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Yu X., Duval M., Gawron M., et al. 2016. Overcoming the constraints of anti-HIV/CD89 bispecific antibodies that limit viral inhibition. J. Immunol. Res. 2016, 9425172.

    PubMed  PubMed Central  Google Scholar 

  99. Shi X., Deng Y., Wang H., et al. 2016. A bispecific antibody effectively neutralizes all four serotypes of dengue virus by simultaneous blocking virus attachment and fusion. mAbs. 8 (3), 574–584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Geoghegan E.M., Zhang H., Desai P.J., et al. 2015. Antiviral activity of a single-domain antibody immunotoxin binding to glycoprotein D of herpes simplex virus 2. Antimicrob. Agents Chemother. 59 (1), 527–535.

    Article  CAS  Google Scholar 

  101. Ibanez L.I., de Filette M., Hultberg A., et al. 2011. Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J. Infect. Dis. 203 (8), 1063–1072.

    Article  PubMed  CAS  Google Scholar 

  102. Manicourt D.H., Fujimoto N., Obata K., Thonar E.J. 1995. Levels of circulating collagenase, stromelysin-1, and tissue inhibitor of matrix metalloproteinases 1 in patients with rheumatoid arthritis: Relationship to serum levels of antigenic keratan sulfate and systemic parameters of inflammation. Arthritis Rheumatol. 38, 1031–1039.

    Article  CAS  Google Scholar 

  103. Silva L.C., Ortigosa L.C., Benard G. 2010. Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: Mechanisms of action and pitfalls. Immunotherapy. 2, 817–833.

    Article  PubMed  CAS  Google Scholar 

  104. Rubbert-Roth A. 2012. Assessing the safety of biologic agents in patients with rheumatoid arthritis. Rheumatology. 51, 38–47.

    Article  CAS  Google Scholar 

  105. Alzabin S., Abraham S.M., Taher T.E., et al. 2012. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann. Rheum. Dis. 71, 1741–1748.

    Article  PubMed  CAS  Google Scholar 

  106. Fischer J.A., Hueber A.J., Wilson S., et al. 2015. Combined inhibition of tumor necrosis factor α and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 67 (1), 51–62.

    Article  PubMed  CAS  Google Scholar 

  107. Genovese M.C., Weinblatt M., Aelion J.A., et al. 2016. ABT-122, a Tnf–and IL-17–targeted dual variable domain (DVD)–Ig™ in rheumatoid arthritis patients with inadequate response to methotrexate: Results from a phase 2 trial. ACR/ARHP Annual Meeting, Washington, DC. Arthritis Rheumatol. 68 (Suppl. 10).

  108. Qi J., Kan F., Ye X., et al. 2012. A bispecific antibody against IL-1β and IL-17A is beneficial for experimental rheumatoid arthritis. Int. Immunopharmacol. 14, 770–778.

    Article  PubMed  CAS  Google Scholar 

  109. Bootz F., Neri D. 2016. Immunocytokines: A novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discovery Today. 21 (1), 180–189.

    Article  PubMed  CAS  Google Scholar 

  110. Hughes C., Sette A., Seed M., et al. 2014. Targeting of viral interleukin-10 with an antibody fragment specific to damaged arthritic cartilage improves its therapeutic potency. Arthritis Res. Ther. 16 (4), R151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Efimov G.A., Kruglov A.A., Khlopchatnikova Z.V., et al. 2016. Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc. Natl. Acad. Sci. U. S. A. 113 (11), 3006–3011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wu C., Ying H., Grinnell C., et al. 2007. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat. Biotechnol. 25, 1290–1297.

    Article  PubMed  CAS  Google Scholar 

  113. DiGiammarino E.L., Harlan J.E., Walter K.A., et al. 2011. Ligand association rates to the inner-variabledomain of a dual-variable-domain immunoglobulin are significantly impacted by linker design. mAbs. 3, 487–494.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Onuoha S.C., Ferrari M., Sblattero D., Pitzalis C. 2015. Rational design of antirheumatic prodrugs specific for sites of inflammation. Arthritis Rheumatol. 67 (10), 2661–2672.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Liu M., Xie M., Jiang S., et al. 2014. A novel bispecific antibody targeting tumor necrosis factor α and ED-B fibronectin effectively inhibits the progression of established collagen-induce arthritis. J. Biotechnol. 186, 1–12.

    Article  PubMed  CAS  Google Scholar 

  116. Kruglov A.A., Lampropoulou V., Fillatreau S., Nedospasov S.A. 2011. Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. J. Immunol. 187, 5660–5670.

    Article  PubMed  CAS  Google Scholar 

  117. Winsauer C., Kruglov A.A., Chashchina A.A., et al. 2014. Cellular sources of pathogenic and protective TNF and experimental strategies based on utilization of TNF humanized mice. Cytokine Growth Factor Rev. 25 (2), 115–123.

    Article  PubMed  CAS  Google Scholar 

  118. Mokhonov V.V., Shilov E.S., Korneev K.V., et al. 2016. Novel bispecific proteins binding cytokines and myeloid cell surface markers. Ross. Immunol. Zh. 10 (19), 378–385.

    Google Scholar 

  119. Bremer E., ten Cate B., Samplonius D.F., et al. 2006. CD7-restricted activation of Fas-mediated apoptosis: A novel therapeutic approach for acute T-cell leukemia. Blood. 107, 2863–2870.

    Article  PubMed  CAS  Google Scholar 

  120. Wilk E., Witte T., Marquardt N., et al. 2009. Depletion of functionally active CD20+ T cells by Rituximab treatment. Arthritis Rheumatol. 60, 3563–3571.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Astrakhantseva.

Additional information

Original Russian Text © E.A. Vasilenko, V.V. Mokhonov, E.N. Gorshkova, I.V. Astrakhantseva, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 3, pp. 380–393.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilenko, E.A., Mokhonov, V.V., Gorshkova, E.N. et al. Bispecific Antibodies: Formats and Areas of Application. Mol Biol 52, 323–334 (2018). https://doi.org/10.1134/S0026893318020176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318020176

Keywords

Navigation