Skip to main content
Log in

Synthesis of circular DNA templates with T4 RNA ligase for rolling circle amplification

  • Structural and Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Currently, isothermal methods of nucleic acid amplification have been well established; in particular, rolling circle amplification is of great interest. In this approach, circular ssDNA molecules have been used as a target that can be obtained by the intramolecular template-dependent ligation of an oligonucleotide C-probe. Here, a new method of synthesizing small circular DNA molecules via the cyclization of ssDNA based on T4 RNA ligase has been proposed. Circular ssDNA is further used as the template for the rolling circle amplification. The maximum yield of the cyclization products was observed in the presence of 5−10% polyethylene glycol 4000, and the optimum DNA length for the cyclization constituted 50 nucleotides. This highly sensitive method was shown to detect less than 102 circular DNA molecules. The method reliability was proved based on artificially destroyed dsDNA, which suggests its implementation for analyzing any significantly fragmented dsDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCR:

polymerase chain reaction

RCA:

rolling circle amplification

NA:

nucleic acid

PEG:

polyethylene glycol

References

  1. Chang C.C., Chen C.C., Wei S.C., Lu H.H., Liang Y.H., Lin C.W. 2011. Diagnostic devices for isothermal nucleic acid amplification. Bioanalysis. 3, 227–239.

    Article  Google Scholar 

  2. Kim J., Easley C.J. 2011. Isothermal DNA amplifcation in bioanalysis: Strategies and applications. Bioanalysis. 3, 227–239.

    Article  CAS  PubMed  Google Scholar 

  3. Gill P., Ghaemi A. 2008. Nucleic acid isothermal amplification technologies: A review. Nucleos. Nucleot. Nucl. Acids. 2, 224–243.

    Article  Google Scholar 

  4. Lizardi P.M., Huang X., Zhu Z., Bray-Ward P., Thomas D.C., Ward D.C. 1998. Mutation detection and single-molecule counting using isothermal rollingcircle amplification. Nat. Genet. 19, 225–232.

    Article  CAS  PubMed  Google Scholar 

  5. Ali M.M., Li F., Zhang Zh., Zhang K., Kang D.K., Ankrum J.A., Le X.C., Zhao W. 2014. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 43, 3324–3341.

    Article  CAS  PubMed  Google Scholar 

  6. Hutchison C.A., Smith H.O., Pfannkoch C., Venter J.C. 2005. Cell-free cloning using phi29 DNA polymerase. Proc. Natl. Acad. Sci. U. S. A. 102, 17332–17336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Polidoros A.N., Pasentsis K., Tsaftaris A.S. 2006. Rolling circle amplification-RACE: A method for simultaneous isolation of 5' and 3' cDNA ends from amplified cDNA templates. BioTechniques. 41, 35–36.

    Article  CAS  PubMed  Google Scholar 

  8. Kaocharoen S., Wang W., Tsui K., Trilles L., Kong F., Meyer W. 2008. Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the Cryptococcus species complex. Electrophoresis. 29, 3183–3191.

    CAS  PubMed  Google Scholar 

  9. Zhang D.Y., Brandwein M., Hsuih T.C., Li H. 1998. Amplification of target-specific, ligation-dependent circular probe. Gene. 211, 277–285.

    Article  CAS  PubMed  Google Scholar 

  10. Murakami T., Sumaoka J., Komiyama M. 2008. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Res. 37, e19.

    Article  Google Scholar 

  11. Kobori T., Takahashi H. 2013. Expanding possibilities of rolling circle amplification as a biosensing platform. Anal. Sci. 30, 59–64.

    Article  Google Scholar 

  12. Lee S.Y., Kim K.R., Bang D., Bae S.W., Kim H.J., Ahn D.R. 2016. Biophysical and chemical handles to control the size of DNA nanoparticles produced by rolling circle amplification. Biomater. Sci. 4 (9), 1314–1317. doi 10.1039/C6BM00296J

    Article  CAS  PubMed  Google Scholar 

  13. Guo L., Hao L., Zhao Q. 2016. An aptamer assay using rolling circle amplification coupled with thrombin catalysis for protein detection. Anal. Bioanal. Chem. 408, 4715–4722.

    Article  CAS  PubMed  Google Scholar 

  14. Uhlenbeck O.C., Gimport R.I. 1982. The Enzymes (T4 RNA Ligase). New York: Academic Press.

  15. Kumar P., Johnston B.H., Kazakov S.A. 2011. miR-ID: A novel, circularization-based platform for detection of microRNAs. RNA. 17, 365–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mathew C.G. 1985. The isolation of high molecular weight eucariotic DNA. Methods Mol. Biol. 2, 31–34.

    CAS  PubMed  Google Scholar 

  17. Maniatis T, Fritsch E.F., Sambrook J. 1982. Molecular Clonong: A Laboratory Manual. Cold Spring Harbor, NY: Cold Sring Harbor Lab. Press.

  18. Silber R., Malathi V.G., Hurwitz J. 1972. Purification and properties of bacteriophage T4-induced RNA ligase. Proc. Natl. Acad. Sci. U. S. A. 69, 3009–3013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Snopek T.J., Sugino A., Agarwal K.L., Cozzarelli N.R. 1976. Catalysis of DNA joining by bacteriophage T4 RNA ligase. Biochem. Biophys. Res. Commun. 68, 417–424.

    Article  CAS  PubMed  Google Scholar 

  20. Sugino A., Snoper T.J., Cozzarelli N.R. 1977. Bacteriophage T4 RNA ligase. Reaction intermediates and interaction of substrates. J. Biol. Chem. 252, 1732–1738.

    CAS  PubMed  Google Scholar 

  21. Kaufmann G., Klein T., Littauer U.Z. 1974. T4 RNA ligase: Substrate chain length requirements. FEBS Lett. 46, 271–275.

    Article  CAS  PubMed  Google Scholar 

  22. Tan E., Erwin B., Dames S., Ferguson T., Buechel M., Irvine B., Voelkerding K., Niemz A. 2008. Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry. 47, 9987–9999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zyrina N.V., Antipova V.N., Zheleznaya L.A. 2014. Ab initio synthesis by DNA polymerases. FEMS Microbiol. Lett. 351, 1–6.

    Article  CAS  Google Scholar 

  24. Zyrina N.V., Zheleznaya L.A., Dvoretsky E.V., Vasiliev V.D., Chernov A., Matvienko N.I. 2007. N.BspD6I DNA nickase strongly stimulates templateindependent synthesis of non-palindromic repetitive DNA by Bst DNA polymerase. Biol. Chem. 388, 367–372.

    Article  CAS  PubMed  Google Scholar 

  25. Antipova V.N., Zheleznaya L.A., Zyrina N.V. 2014. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI. FEMS Microbiol. Lett. 357, 144–150.

    CAS  PubMed  Google Scholar 

  26. Tessier D.C., Brousseau R., Vernet T. 1986. Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Anal. Biochem. 158, 171–178.

    Article  CAS  PubMed  Google Scholar 

  27. Harrison B., Zimmerman S.B. 1984. Polymer-stimulated ligation: Enhanced ligation of oligo- and polynucleotides by T4 RNA ligase in polymer solutions. Nucleic Acids Res. 12, 8235–8251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Sakhabutdinova.

Additional information

Original Russian Text © A.R. Sakhabutdinova, M.A. Maksimova, R.R. Garafutdinov, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 4, pp. 724–733.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhabutdinova, A.R., Maksimova, M.A. & Garafutdinov, R.R. Synthesis of circular DNA templates with T4 RNA ligase for rolling circle amplification. Mol Biol 51, 639–646 (2017). https://doi.org/10.1134/S0026893317040161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317040161

Keywords

Navigation