Skip to main content
Log in

Hsp70 genes of the Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) parasitic wasp

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Miniaturization is an evolutionary process that is widely represented in both invertebrates and vertebrates. Miniaturization frequently affects not only the size of the organism and its constituent cells, but also changes the genome structure and functioning. The structure of the main heat shock genes (hsp70 and hsp83) was studied in one of the smallest insects, the Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) parasitic wasp, which is comparable in size with unicellular organisms. An analysis of the sequenced genome has detected six genes that relate to the hsp70 family, some of which are apparently induced upon heat shock. Both induced and constitutively expressed hsp70 genes contain a large number of introns, which is not typical for the genes of this family. Moreover, none of the found genes form clusters, and they are all very heterogeneous (individual copies are only 75–85% identical), which indicates the absence of gene conversion, which provides the identity of genes of this family in Drosophila and other organisms. Two hsp83 genes, one of which contains an intron, have also been found in the M. amalphitanum genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hsp:

heat shock protein

HSF:

heat shock transcription factor

HSE:

heat shock element

References

  1. Lindquist S.L. 1986. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191.

    Article  CAS  PubMed  Google Scholar 

  2. Parsell D.A., Lindquist S.L. 1993. The function of heat shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496.

    Article  CAS  PubMed  Google Scholar 

  3. Evgen’ev M.B., Garbuz D.G., Zatsepina O.G. 2014. Heat Shock Proteins and Whole Body Adaptation to Extreme Environments. Dordrecht: Springer.

    Google Scholar 

  4. Solomon J.M., Rossi J.M., Golic K., McGarry T., Lindquist S. 1991. Changes in Hsp70 alter thermotolerance and heat-shock regulation in Drosophila. New Biol. 3, 1106–1120.

    CAS  PubMed  Google Scholar 

  5. Kim Y.E., Hipp M.S., Bracher A., Hayer-Hartl M., Hartl F.U. 2013. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355.

    Article  CAS  PubMed  Google Scholar 

  6. Guzhova I., Margulis B.A. 2006. Hsp70 chaperone as a survival factor in cell pathology. Int. Rev. Cytol. 254, 101–149.

    Article  CAS  PubMed  Google Scholar 

  7. Ulmasov K.A., Shammakov S., Karaev K.K., Evgen’ev M.B. 1992. Heat shock proteins and thermoresistance in lizards. Proc. Natl. Acad. Sci. U. S. A. 89, 1666–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gehring W.J., Wehner R. 1995. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc. Natl. Acad. Sci. U. S. A. 92, 2994–2998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biswas S., Sharma Y.D. 1994. Enhanced expression of Plasmodium falciparum heat shock protein PFHSP70-I at higher temperatures and parasite survival. FEMS Microbiol. Lett. 124, 425–429.

    Article  CAS  PubMed  Google Scholar 

  10. Gregory T.R., Hebert P.D., Kolasa J. 2000. Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity. 84 (2), 201–208.

    Article  PubMed  Google Scholar 

  11. Liu S., Hui T.H., Tan S.L., Hong Y. 2012. Chromosome evolution and genome miniaturization in minifish. PLoS ONE. 7 (5), e37305.

    Article  Google Scholar 

  12. Harris R.A., Tardif S.D., Vinar T., Wildman D.E., Rutherford J.N., Rogers J., Worley K.C., Aagaard K.M. 2014. Evolutionary genetics and implications of small size and twinning in callitrichine primates. Proc. Natl. Acad. Sci. U. S. A. 111 (4), 1467–1472.

    Article  CAS  PubMed  Google Scholar 

  13. Polilov A.A., Beutel R.G. 2009. Miniaturisation effects in larvae and adults of Mikado sp. (Coleoptera: Ptiliidae), one of the smallest free-living insects. Arthropod Struct. Dev. 38 (3), 247–270.

    Google Scholar 

  14. Polilov A.A. 2012. The smallest insects evolve anucleate neurons. Arthropod Struct. Dev. 41 (1), 29–34.

    PubMed  Google Scholar 

  15. Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., He G., Chen Y., Pan Q., Liu Y., Tang J., Wu G., Zhang H., Shi Y., Liu Y., et al. 2012. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience. 1 (1), 18.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5), 455–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen A.D., Gotelli N.J., Cahan S.H. 2016. The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. BMC Evol. Biol. 16, 15. doi 10.1186/s12862-015-0573-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Honeybee Genome Sequencing Consortium. 2006. Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 443 (7114), 931–949.

    Article  Google Scholar 

  19. Heschl M.F., Baillie D.L. 1989. Characterization of the hsp70 multigene family of Caenorhabditis elegans. DNA. 8, 233–243.

    Article  CAS  PubMed  Google Scholar 

  20. Metzger D.C., Hemmer-Hansen J., Schulte P.M. 2016. Conserved structure and expression of hsp70 paralogs in teleost fishes. Comp. Biochem. Physiol. Part D. Genomics Proteomics. 18, 10–20.

    Article  CAS  PubMed  Google Scholar 

  21. Radons J. 2016. The human HSP70 family of chaperones: Where do we stand? Cell Stress Chaperones. 21 (3), 379–404.

  22. Garbuz D.G., Yushenova I.A., Zatsepina O.G., Przhiboro A.A., Bettencourt B.R., Evgen’ev M.B. 2011. Organization and evolution of hsp70 clusters strikingly differ in two species of Stratiomyidae (Diptera) inhabiting thermally contrasting environments. BMC Evol. Biol. 11, 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muhich M., Boothroyd J. 1989. Synthesis of Trypanosome hsp70 mRNA is resistant to disruption of transsplicing by heat shock. J. Biol. Chem. 264, 7107–7111.

    CAS  PubMed  Google Scholar 

  24. Bettencourt B.R., Feder M.E. 2002. Rapid concerted evolution via gene conversion at the Drosophila hsp70 genes. J. Mol. Evol. 54, 569–586.

    Article  CAS  PubMed  Google Scholar 

  25. Southgate R., Mirault M., Ayme A., Tissieres A. 1985. Organization, sequences and induction of heat shock genes. In: Changes in Eukaryotic Gene Expression in Response to Environmental Stress. New York: Academic Press, pp. 3–30.

    Chapter  Google Scholar 

  26. Wang H., Li K., Zhu J.Y., Fang Q., Ye G.Y., Wang H., Li K., Zhu J.Y. 2012. Cloning and expression pattern of heat shock protein genes from the endoparasitoid wasp, Pteromalus puparum in response to environmental stresses. Arch. Insect Biochem. Physiol. 79 (4–5), 247–263.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Evgen’ev.

Additional information

Original Russian Text © L.N. Chuvakova, F.S. Sharko, A.V. Nedoluzhko, A.A. Polilov, E.B. Prokhorchuk, K.G. Skryabin, M.B. Evgen’ev, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 4, pp. 615–621.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvakova, L.N., Sharko, F.S., Nedoluzhko, A.V. et al. Hsp70 genes of the Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) parasitic wasp. Mol Biol 51, 543–548 (2017). https://doi.org/10.1134/S0026893317040094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317040094

Keywords

Navigation