Skip to main content
Log in

Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis С virus proteins in Huh7.5 human hepatocarcinoma cells

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Hepatitis C virus (HCV) induces the expression of the genes of proinflammatory cytokines, the excessive production of which may cause cell death, and contribute to development of liver fibrosis and hepatocarcinoma. The relationship between cytokine production and metabolic disorders in HCV-infected cells remains obscure. The levels of biogenic polyamines, spermine, spermidine, and their precursor putrescine, may be a potential regulator of these processes. The purpose of the present work was to study the effects of the compounds which modulate biogenic polyamines metabolism on cytokine production and HCV proteins expression. Human hepatocarcinoma Huh7.5 cells have been transfected with the plasmids that encode HCV proteins and further incubated with the following low-molecular compounds that affect different stages of polyamine metabolism: (1) difluoromethylornithine (DFMO), the inhibitor of ornithine decarboxylase, the enzyme that catalyzes the biosynthesis of polyamines; (2) N,N'-bis(2,3-butane dienyl)-1,4-diaminobutane (MDL72.527), the inhibitor of proteins involved in polyamine degradation; and (3) synthetic polyamine analog N1,N11-diethylnorspermine (DENSpm), an inducer of polyamine degradation enzyme. The intracellular accumulation and secretion of cytokines (IL-6, IL-1β, TNF-α, and TGF-β) was assessed by immunocytochemistry and in the immunoenzyme assay, while the cytokine gene expression was studied using reverse transcription and PCR. The effects of the compounds under analysis on the expression of HCV proteins were analyzed using the indirect immunofluorescence with anti-HCV monoclonal antibodies. It has been demonstrated that, in cells transfected with HCV genes, DFMO reduces the production of three out of four tested cytokines, namely, TNF-α and TGF-β in cells that express HCV core, Е1Е2, NS3, NS5A, and NS5B proteins, and IL-1β in the cells that express HCV core, Е1Е2, and NS3 proteins. MDL72527 and DENSpm decreased cytokine production to a lesser extent. Incubation with DFMO led to a 28–32% decrease in the number of cells expressing NS5B or NS5A, both of which are key components of the HCV replication complex. The results obtained in the work indicate that a further detailed study of the antiviral activity of DFMO is required in order to assess its potential as an anti-hepatitis C therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APAO:

polyamine oxidase

CHC:

chronic hepatitis C

DENSpm:

N1,N11-diethylnorspermine

DFMO:

difluoromethylornithine

ELISA:

immunoenzyme assay

HCV:

hepatitis C virus

IL:

interleukin

mAb:

monoclonal antibody

MDL:

N,N'-bis(2,3-butane dienyl)-1,4-diaminobutane (MDL72.527)

NS:

nonstructural protein

ODC:

ornithine decarboxylase

OS:

oxidative stress

ROS:

reactive oxygen species

SMO:

spermine oxidase

SSAT:

spermidine/spermine N1-acetyltransferase

TGF:

transforming growth factor

TNF:

tumor necrosis factor

References

  1. Li H.C., Lo S.Y. 2015. Hepatitis C virus: Virology, diagnosis and treatment. World J.Hepatol. 7, 1377–1389.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zampino R., Marrone A., Restivo L., Guerrera B., Sellitto A., Rinaldi L., Romano C., Adinolfi L.E. 2013. Chronic HCV infection and inflammation: Clinical impact on hepatic and extra-hepatic manifestations. World J.Hepatol. 5, 528–540.

    PubMed  PubMed Central  Google Scholar 

  3. Drummer H.E. 2014. Challenges to the development of vaccines to hepatitis C virus that elicit neutralizing antibodies. Front. Microbiol. 5, 329.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pawlotsky J.M. 2014. New hepatitis C virus (HCV. drugs and the hope for a cure: Concepts in anti-HCV drug development. Semin. Liver Dis. 34, 22–29.

    Article  CAS  PubMed  Google Scholar 

  5. Rupp D., Bartenschlager R. 2014. Targets for antiviral therapy of hepatitis C.Semin. Liver Dis. 34, 9–21.

    Article  CAS  Google Scholar 

  6. Attar B.M., Van Thiel D. 2015. A new twist to a chronic HCV infection: Occult hepatitis C.Gastroenterol. Res. Pract. 2015, 579147.

    Google Scholar 

  7. Selimovic D., El-Khattouti A., Ghozlan H., Haikel Y., Abdelkader O., Hassan M. 2012. Hepatitis C virusrelated hepatocellular carcinoma: An insight into molecular mechanisms and therapeutic strategies. World J.Hepatol. 4, 342–355.

    PubMed  PubMed Central  Google Scholar 

  8. Szabo G., Petrasek J. 2015. Inflammasome activation and function in liver disease. Nat. Rev. Gastroenterol. Hepatol. 12, 387–400.

    Article  CAS  PubMed  Google Scholar 

  9. Negash A.A., Ramos H.J., Crochet N., Lau D.T., Doehle B., Papic N., Delker D.A., Jo J., Bertoletti A., Hagedorn C.H., Gale M., Jr. 2013. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog. 9, e1003330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paracha U.Z., Fatima K., Alqahtani M., Chaudhary A., Abuzenadah A., Damanhouri G., Qadri I. 2013. Oxidative stress and hepatitis C virus. Virol. J. 10, 251.

  11. Ivanov A.V., Bartosch B., Smirnova O.A., Isaguliants M.G., Kochetkov S.N. 2013. HCV and oxidative stress in the liver. Viruses. 5, 439–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Casero R.A., Pegg A.E. 2009. Polyamine catabolism and disease. Biochem. J. 421, 323–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pegg A.E., Casero R.A. 2011. Current status of the polyamine research field. Methods Mol. Biol. 720, 3–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smirnova O.A., Isaguliants M.G., Hyvonen M.T., Keinanen T.A., Tunitskaya V.L., Vepsalainen J., Alhonen L., Kochetkov S.N., Ivanov A.V. 2012. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie. 94, 1876–1883.

    Article  CAS  PubMed  Google Scholar 

  15. Battaglia V., DeStefano Shields C., Murray-Stewart T., Casero R.A. 2014. Polyamine catabolism in carcinogenesis: Potential targets for chemotherapy and chemoprevention. Amino Acids. 46, 511–519.

    Article  CAS  PubMed  Google Scholar 

  16. Park M.H., Igarashi K. 2013. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol. Ther. (Seoul). 21, 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Korovina A.N., Tunitskaya V.L., Khomutov M.A., Simonian A.R., Khomutov A.R., Ivanov A.V., Kochetkov S.N. 2012. Biogenic polyamines spermine and spermidine activate RNA polymerase and inhibit RNA helicase of hepatitis C virus. Biochemistry (Moscow). 77 (10), 1172–1180.

    Article  CAS  PubMed  Google Scholar 

  18. Lindenbach B.D., Evans M.J., Syder A.J., Wölk B., Tellinghuisen T.L., Liu C.C., Maruyama T., Hynes R.O., Burton D.R., McKeating J.A., Rice C.M. 2005. Complete replication of hepatitis C virus in cell culture. Science. 309, 623–626.

    Article  CAS  PubMed  Google Scholar 

  19. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H.G., Mizokami M., Bartenschlager R., Liang T.J. 2005. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masalova O.V., Lesnova E.I., Grabovetskii V.V., Smirnova O.A., Ulanova T.I., Burkov A.N., Ivanov A.V., Zaberezhnyi A.D., Ataullakhanov R.I., Kushch A.A. 2010. DNA immunization with a plasmid carrying the gene of hepatitis C virus protein 5A (NS5A) induces an effective cellular immune response. Mol. Biol. (Moscow). 44 (2), 245–253.

    Article  CAS  Google Scholar 

  21. Masalova O.V., Lesnova E.I., Ivanov A.V., Pichugin A.V., Permyakova K.Yu., Tunitskaya V.L., Ulanova T.I., Burkov A.N., Kochetkov S.N., Ataullakhanov R.I., Kushch A.A. 2013. Comparative analysis of immune response to DNA constructs encoding hepatitis C virus nonstructural proteins. Vopr. Virusol. 58, 21–28.

    CAS  PubMed  Google Scholar 

  22. Permyakova K.Yu., Lesnova E.I., Masalova O.V., Ivanov A.V., Ataullakhanov R.I., Kushch A.A. 2015. Immunogenic properties of DNA constructs containing structural and nonstructural regions of hepatitis C virus. Immunologiya. 36, 162–167.

    Google Scholar 

  23. Ivanov A.V., Smirnova O.A., Ivanova O.N., Masalova O.V., Kochetkov S.N., Isaguliants M.G. 2011. Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independent mechanisms in HUH7 cells. PLoS ONE. 6, e24957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rechkina E.A., Denisova G.F., Masalova O.V., Lideman L.F., Denisov D.A., Lesnova E.I., Ataullakhanov R.I., Gurianova S.V., Kushch A.A. 2006. Mapping of antigenic determinants of hepatitis C virus proteins using phage display. Mol. Biol. (Moscow). 40 (2), 312–324.

    Article  CAS  Google Scholar 

  25. Babbar N., Murray-Stewart T., Casero R.A. 2007. Inflammation and polyamine catabolism: The good, the bad and the ugly. Biochem. Soc. Trans. 35, 300–304.

    Article  CAS  PubMed  Google Scholar 

  26. Desiderio M.A., Pogliaghi G., Dansi P. 1998. Regulation of spermidine/spermine N1-acetyltransferase expression by cytokines and polyamines in human hepatocarcinoma cells (HepG2). J. Cell Physiol. 174, 125–134.

    Article  CAS  PubMed  Google Scholar 

  27. Babbar N., Hacker A., Huang Y., Casero R.A. 2006. Tumor necrosis factor alpha induces spermidine/spermine N1-acetyltransferase through nuclear factor kappaB in non-small cell lung cancer cells. J. Biol. Chem. 281, 24182–24192.

    Article  CAS  PubMed  Google Scholar 

  28. Babbar N., Casero R.A. 2006. Tumor necrosis factoralpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: A potential mechanism for inflammation-induced carcinogenesis. Cancer Res. 66, 11125–11130.

    Article  CAS  PubMed  Google Scholar 

  29. Brenner C., Galluzzi L., Kepp O., Kroemer G. 2013. Decoding cell death signals in liver inflammation. J. Hepatol. 59, 583–594.

    Article  CAS  PubMed  Google Scholar 

  30. Sancho P., Mainez J., Crosas-Molist E., Roncero C., Fernández-Rodriguez C.M., Pinedo F., Huber H., Eferl R., Mikulits W., Fabregat I. 2012. NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS ONE. 7, e45285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rao J.N., Li L., Bass B.L., Wang J.Y. 2000. Expression of the TGF-beta receptor gene and sensitivity to growth inhibition following polyamine depletion. Am. J. Physiol. Cell Physiol. 279, C1034–1044.

  32. Stabellini G., Moscheni C., Gagliano N., Dellavia C., Calastrini C., Ferioli M.E., Gioia M. 2005. Depletion of polyamines and increase of transforming growth factor-beta1, c-myc, collagen-type I, matrix metalloproteinase-1, and metalloproteinase-2 mRNA in primary human gingival fibroblasts. J. Periodontol. 76, 443–449.

    Article  CAS  PubMed  Google Scholar 

  33. Wang J.Y., Viar M.J., Li J., Shi H.J., McCormack S.A., Johnson L.R. 1997. Polyamines are necessary for normal expression of the transforming growth factor-beta gene during cell migration. Am. J. Physiol. 272 (4, Pt. 1), G713–G720.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Masalova.

Additional information

Original Russian Text © O.V. Masalova, E.I. Lesnova, E.I. Samokhvalov, K.Yu. Permyakova, A.V. Ivanov, S.N. Kochetkov, A.A. Kushch, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 3, pp. 512–523.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masalova, O.V., Lesnova, E.I., Samokhvalov, E.I. et al. Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis С virus proteins in Huh7.5 human hepatocarcinoma cells. Mol Biol 51, 453–464 (2017). https://doi.org/10.1134/S0026893317030128

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317030128

Keywords

Navigation