Skip to main content
Log in

Metagenomics and biodiversity of sphagnum bogs

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Biodiversity of sphagnum bogs is one of the richest and less studied, while these ecosystems are among the top ones in ecological, conservation, and economic value. Recent studies focused on the prokaryotic consortia associated with sphagnum mosses, and revealed the factors that maintain sustainability and productivity of bog ecosystems. High-throughput sequencing technologies provided insight into functional diversity of moss microbial communities (microbiomes), and helped to identify the biochemical pathways and gene families that facilitate the spectrum of adaptive strategies and largely foster the very successful colonization of the Northern hemisphere by sphagnum mosses. Rich and valuable information obtained on microbiomes of peat bogs sets off the paucity of evidence on their eukaryotic diversity. Prospects and expectations of reliable assessment of taxonomic profiles, relative abundance of taxa, and hidden biodiversity of microscopic eukaryotes in sphagnum bog ecosystems are briefly outlined in the context of today’s metagenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soudzilovskaia N.A., Cornelissen J.H.C., During H.J., Van Logtestijn R.S.P, Lang S.I., Aerts, R. 2010. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Ecology. 91, 2716–2726.

    Article  CAS  PubMed  Google Scholar 

  2. Gorham E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195.

    Article  Google Scholar 

  3. O’Neill K.P. 2000. Role of bryophyte-dominated ecosystems in the global carbon budget. In: Bryophyte Biology. Eds. Shaw A.J., Goffinet B. Cambridge: Cambridge Univ. Press, pp. 344–368.

    Chapter  Google Scholar 

  4. Strack M. 2008. Peatlands and Climate Change. Jyvaskyla, Finland: International Peat Society.

    Google Scholar 

  5. Dise N.B. 2009. Peatland response to global change. Science. 326, 810.

    Article  CAS  PubMed  Google Scholar 

  6. Joosten H., Couwenberg J. 2009. Are Emission Reductions from Peatlands MRV-Able? Eds, The Netherlandsde: Wetlands International.

    Google Scholar 

  7. Fyfe R.M. 2006. Sustainable conservation and management of the historic environment record in upland peat: A view from Exmoor. Int. J. Biodivers. Sci. Management. 2, 146–149.

    Article  Google Scholar 

  8. Van Der Putten N., Verbruggen C., Ochyra R., Spassov S., De Beaulieu J.L., De Dapper M., Thouveny N. 2009. Peat bank growth, Holocene palaeoecology and climate history of South Georgia (sub-Antarctica), based on a botanical macrofossil record. Quat. Sci. Rev. 28, 65–79.

    Article  Google Scholar 

  9. Fyfe R.M. 2012. Bronze Age landscape dynamics: Spatially detailed pollen analysis from a ceremonial complex. J. Archaeol. Sci. 39, 2764–2773.

    Article  Google Scholar 

  10. Davies H., Fyfe R.M., Charman D. 2015. Does peatland drainage damage the palaeoecological record? Rev. Palaeobot. Palynol. 221, 92–105.

    Article  Google Scholar 

  11. Berg G., Zachow C., Müller H., Philipps J., Tilcher, R. 2013. Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy. 3, 648–656.

    Article  Google Scholar 

  12. Bulgarelli D., Schlaeppi K., Spaepen S., van Themaat E.V.L., Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838.

    Article  CAS  PubMed  Google Scholar 

  13. Philippot L., Raaijmakers J.M., Lemanceau P., van der Putten W.H. 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nature Rev. Microbiol. 11, 789–799.

    Article  CAS  Google Scholar 

  14. Opelt K., Berg C., Schönmann S., Eberl L., Berg G. 2007. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 1, 502–516.

    Article  CAS  PubMed  Google Scholar 

  15. Bragina A., Maier S., Berg C., Müller H., Chobot V., Hadacek F., Berg G. 2011. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front. Microbiol. 2, 275.

    PubMed  Google Scholar 

  16. Bragina A., Berg C., Müller H., Moser D., Berg G. 2013. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci. Reports. 3, 1955.

    Google Scholar 

  17. Raghoebarsing A.A., Smolders A.J., Schmid M.C., Rijpstra W.I.C., Wolters-Arts M., Derksen J., Jetten M.S.M., Schouten S., Sinninghe Damsté J.S., Lamers L.P.M., Roelofs J.G.M., den Camp H.J.M.O., Strous M. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature. 436, 1153–1156.

    Article  CAS  PubMed  Google Scholar 

  18. Larmola T., Tuittila E. S., Tiirola M., Nykänen H., Martikainen P.J., Yrjälä K., Tuomivirta T, Fritze H. 2010. The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology. 91, 2356–2365.

    Article  PubMed  Google Scholar 

  19. Kip N., Ouyang W., van Winden J., Raghoebarsing A., van Niftrik L., Pol A., Pan Y., Bodrossy L., van Donselaar E.G., Reichart G.-J., Jetten M.S.M., Sinninghe Damsté J.S., den Camp H.J.M.O. 2011. Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl. Environ. Microbiol. 77, 5643–5654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Putkinen A., Larmola T., Tuomivirta T., Siljanen H.M., Bodrossy L., Tuittila E.S., Fritze H. 2012. Water dispersal of methanotrophic bacteria maintains functional methane oxidation in Sphagnum mosses. Front. Microbiol. 3, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Opelt K., Chobot V., Hadacek F., Schönmann S., Eberl L., Berg G. 2007. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ. Microbiol. 9, 2795–2809.

    Article  CAS  PubMed  Google Scholar 

  22. Bragina A., Berg C., Cardinale M., Shcherbakov A., Chebotar V., Berg G. 2012. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 6, 802–813.

    Article  CAS  PubMed  Google Scholar 

  23. Bragina A., Oberauner-Wappis L., Zachow C., Halwachs B., Thallinger G.G., Müller H., Berg G. 2014. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Mol. Ecol. 23, 4498–4510.

    Article  CAS  PubMed  Google Scholar 

  24. Tveit A., Schwacke R., Svenning M.M., Urich T. 2013. Organic carbon transformations in high-Arctic peat soils: Key functions and microorganisms. ISME J. 7, 299–311.

    Article  CAS  PubMed  Google Scholar 

  25. Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., von Mering C., Vorholt J.A. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. U. S. A. 106, 16428–16433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Opelt K., Berg G. 2004. Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic Sea coast. Appl. Environ. Microbiol. 70, 6569–6579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ochman H., Moran N.A. 2001. Genes lost and genes found: Evolution of bacterial pathogenesis and symbiosis. Science. 292, 1096–1099.

    Article  CAS  PubMed  Google Scholar 

  28. Thomas T., Rusch D., DeMaere M.Z., Yung P.Y., Lewis M., Halpern A., Heidelberg K.B., Egan S., Steinberg P.D., Kjelleberg S. 2010. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 4, 1557–1567.

    Article  CAS  PubMed  Google Scholar 

  29. Berg A., Danielsson Å., Svensson B.H. 2013. Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss. Plant Soil. 362, 271–278.

    Article  CAS  Google Scholar 

  30. Kreutz M., Foissner W. 2006. The Sphagnum Ponds of Simmelried in Germany: A Biodiversity Hot-Spot for Microscopic Organisms. Aachen: Shaker Verlag.

    Google Scholar 

  31. Fonseca V.G., Carvalho G.R., Sung W., Johnson H.F., Power D.M., Neill S.P., Packer M., Blaxter M.L., Lambshead P.J.D., Thomas W.K., Creer S. 2010. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nat. Commun. 1, 98.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stoeck T., Bass D., Nebel M., Christen R., Jones M.D., Breiner H.W., RichardsT.A. 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31.

    Article  CAS  PubMed  Google Scholar 

  33. Bik H.M., Sung W.A.Y., De Ley P., Baldwin J.G., Sharma J., Rocha-Olivares A.X., Thomas W.K. 2012. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Mol. Ecol. 21, 1048–1059.

    Article  PubMed  Google Scholar 

  34. Logares R., Audic S., Bass D., Bittner L., Boutte C., Christen R., Claverie J.M., Decelle J., Dolan J.R., Dunthorn M., Edvardsen B., Gobet A., Kooistra W.H., Mahé F., Not F., et al. 2014. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24, 813–821.

    Article  CAS  PubMed  Google Scholar 

  35. Fonseca V.G., Carvalho G.R., Nichols B., Quince C., Johnson H.F., Neill S.P., Lambshead J.D., Thomas W.K., Power D.M., Creer S. 2014. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Global Ecol. Biogeogr. 23, 1293–1302.

    Article  Google Scholar 

  36. Hajibabaei M., Shokralla S., Zhou X., Singer G. A., Baird D.J. 2011. Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE. 6, e17497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nilsson R.H., Kristiansson E., Ryberg M., Hallenberg N., Larsson K.H. 2008. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online. 4, 193.

    PubMed  PubMed Central  Google Scholar 

  38. Huber J.A., Morrison H.G., Huse S.M., Neal P.R., Sogin M.L., Welch M.D.B. 2009. Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. Environ. Microbiol. 11, 1292–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dunthorn M., Otto J., Berger S.A., Stamatakis A., Mahé F., Romac S., de Vargas C., Audic S., BioMarKs Consortium, Stock A., Kauff F., Stoeck T. 2014. Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol. Biol. Evol. 31, 993–1009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Rusin.

Additional information

Original Russian Text © L.Yu. Rusin, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 5, pp. 730–734.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusin, L.Y. Metagenomics and biodiversity of sphagnum bogs. Mol Biol 50, 645–648 (2016). https://doi.org/10.1134/S0026893316050150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316050150

Keywords

Navigation