Skip to main content
Log in

DNA tandem lesion: 5′,8-cyclo-2′-deoxyadenosine. The influence on human health

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Nucleic acids are the targets for various endogenous and exogenous genotoxic agents, including reactive oxygen species. The appearance of a hydroxyl racial (OH), the most harmful molecule, next to an oligonucleotide can lead to two types of DNA damage: strand breaks or nucleobase modifications. Since clustered DNA damage is defined as the presence of two or more lesions in one helix turn, purine 5′,8-cyclo-2′-deoxynucleosides are recognized as tandem lesions: both sugar moieties and base have been modified within one nucleoside/nucleotide. The hydrogen abstraction from the C5′ group of nucleosides/nucleotides by OH, with subsequent C8 C5′ cyclisation results in purine 5′,8-cyclonucleoside formation. Due to its unusual 3D structure and the fact that only one radical hit is needed for purine 5′,8-cyclonucleoside formation their influence on genome stability/integrity and DNA repair processes are subjects of medical interest. In the present work the influence of 5′,8-cyclo-2′-deoxyadenosine on DNA spatial geometry and DNA repair hinder in connection with human health, such as neurological disorders is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fridovich I. 2013. Oxygen: How do we stand it? Med. Princ. Pract. 22, 131–137.

    Article  Google Scholar 

  2. Dizdaroglu M., Jaruga P. 2012. Mechanisms of free radical-induced damage to DNA. Free. Radic. Res. 46, 382–419.

    Article  CAS  PubMed  Google Scholar 

  3. Pham-Huy L.A., He H., Pham-Huy C. 2008. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4, 89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Balasubramanian B., Pogozelski W.K., Tullius T.D. 1998. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. U. S. A. 95, 9738–9743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution. J. Phys. Chem. Ref. Data. 17, 513–886.

    Article  CAS  Google Scholar 

  6. Keck K. 1968. Formation of cyclonucleotides during irradiation of aqueous solutions of purine nucleotides. Z. Naturforsch. B. 23, 1034–1043.

    Article  CAS  PubMed  Google Scholar 

  7. Mariaggi N., Cadet J., Teoule R. 1976. Cyclisation radicalaire de la desoxy-2′ adenosine en solution aqueuse, sous I’effet du rayonnement gamma. Tetrahedron. 32, 2385–2387.

    Article  CAS  Google Scholar 

  8. Raleigh J.A., Fuciarelli A.F. 1985. Distribution of damage in irradiated 5′-AMP, 8,5′-cyclo-AMP, 8-hydroxy-AMP, and adenine release. Radiat. Res. 102, 165–175.

    Article  CAS  Google Scholar 

  9. Birnbaum G.I., Cygler M., Dudycz L., Stolarski R., Shugar D. 1981. Comparison of solid state and solution conformations of R and S epimers of 8,5′-cycloadenosine and their relevance to some enzymatic reactions. Biochemistry. 20, 3294–3301.

    Article  CAS  PubMed  Google Scholar 

  10. Belmadoui N., Boussicault F., Guerra M., Ravanat J.L., Chatgilialoglu C., Cadet J. 2010. Radiation-induced formation of purine 5′,8-cyclonucleosides in isolated and cellular DNA: High stereospecificity and modulating effect of oxygen. Org. Biomol. Chem. 8, 3211–3219.

    Article  CAS  PubMed  Google Scholar 

  11. Aydogan B., Marshall D.T., Swarts S.G., Turner J.E., Boone A.J., Richards N.G., Bolch W.E. 2002. Sitespecific OH attack to the sugar moiety of DNA: A comparison of experimental data and computational simulation. Radiat. Res. 157, 38–44.

    Article  CAS  PubMed  Google Scholar 

  12. Chatgilialoglu C., Guerra M., Mulazzani Q.G. 2003. Model studies of DNA C5′ radicals. Selective generation and reactivity of 2′-deoxyadenosin-5′-yl radical. J. Am. Chem. Soc. 125, 3839–3848.

    CAS  PubMed  Google Scholar 

  13. Dirksen M.L., Blakely W.F., Holwitt E., Dizdaroglu M. 1988. Effect of DNA conformation on the hydroxyl radical-induced formation of 8,5′-cyclopurine 2′-deoxyribonucleoside residues in DNA. Int. J. Radiat. Biol. 54, 195–204.

    Article  CAS  PubMed  Google Scholar 

  14. Jimenez L.B., Encinas S., Chatgilialoglu C., Miranda M.A. 2008. Solar one-way photoisomerisation of 5′,8-cyclo-2′-deoxyadenosine. Org. Biomol. Chem. 6, 1083–1086.

    Article  CAS  PubMed  Google Scholar 

  15. Zaliznyak T., Lukin M., Santos C. 2012. Structure and stability of duplex DNA containing (5′s)-5′,8-cyclo-2′-deoxyadenosine: An oxidatively-generated lesion repaired by NER. Chem. Res. Toxicol. 25, 2103–2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brooks P.J., Wise D.S., Berry D.A., Kosmoski J.V., Smerdon M.J., Somers R.L., Mackie H., Spoonde A.Y., Ackerman E.J., Coleman K., Tarone R.E., Robbins J.H. 2000. The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J. Biol. Chem. 275, 22355–22362.

    Article  CAS  PubMed  Google Scholar 

  17. Kuraoka I., Bender C., Romieu A., Cadet J., Wood R.D., Lindahl T. 2000. Removal of oxygen free-radicalinduced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc. Natl. Acad. Sci. U. S. A. 97, 3832–3838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pande P., Das R.S., Sheppard C., Kow Y.W., Basu A.K. 2012. Repair efficiency of (5′S)-8,5′-cyclo-2′-deoxyguanosine and (5′S)-8,5′-cyclo-2′-deoxyadenosine depends on the complementary base. DNA Repair. 11, 926–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kropachev K., Ding S., Terzidis M.A., Masi A., Liu Z., Cai Y., Kolbanovskiy M., Chatgilialoglu C., Broyde S., Geacintov N.E., Shafirovich V. 2014. Structural basis for the recognition of diastereomeric 5′,8-cyclo-2′-deoxypurine lesions by the human nucleotide excision repair system. Nucleic Acids Res. 42, 5020–5032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuraoka I., Bender C., Romieu A., Cadet J., Wood R.D., Lindahl T. 2000. Removal of oxygen free-radicalinduced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc. Natl. Acad. Sci. U. S. A. 97, 3832–3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marietta C., Gulam H., Brooks P.J. 2002. A single 8,5′-cyclo-2′-deoxyadenosine lesion in a TATA box prevents binding of the TATA binding protein and strongly reduces transcription in vivo. DNA Repair. 1, 967–975.

    Article  CAS  PubMed  Google Scholar 

  22. Kuraoka I., Bender C., Romieu A., Cadet J., Wood R.D., Lindahl T. 2000. Removal of oxygen free-radicalinduced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc. Natl. Acad. Sci. U. S. A. 97, 3832–3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuraoka I., Robins P., Masutani C., Hanaoka F., Gasparutto D., Cadet J., Wood R.D., Lindahl T.J. 2001. Oxygen free radical damage to DNA. Translesion synthesis by human DNA polymerase and resistance to exonuclease action at cyclopurine deoxynucleoside residues. J. Biol. Chem. 276, 49283–49288.

    Article  CAS  PubMed  Google Scholar 

  24. Xu M., Lai Y., Jiang Z., Terzidis M.A., Masi A., Chatgilialoglu C., Liu Y. 2014. A 5′,8-cyclo-2′-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypaßs by DNA polymerase ß. Nucleic Acids Res. 42, 13749–13763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang Z., Xu M., Lai Y., Laverde E.E., Terzidis M.A., Masi A., Chatgilialoglu C., Liu Y. 2015. Bypaßs of a 5′,8-cyclopurine-2′-deoxynucleoside by DNA polymerase ß during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks. DNA Repair. 33, 24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sinha R.P., Häder D.P. 2002. UV-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 1, 225–236.

    Article  CAS  PubMed  Google Scholar 

  27. Lehmann A.R., McGibbon D., Stefanini M. 2011. Xeroderma pigmentosum. Orphanet. J. Rare. Dis. 6, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brooks P.J. 2008. The 8,5′-cyclopurine-2′-deoxynucleosides: Candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair. 7, 1168–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brooks P.J. 2007. The case for 8,5′-cyclopurine-2′-deoxynucleosides as endogenous DNA lesions that cause neurodegeneration in xeroderma pigmentosum. Neuroscience. 145, 1407–1417.

    Article  CAS  PubMed  Google Scholar 

  30. Weidenheim K.M., Dickson D.W., Rapin I. 2009. Neuropathology of Cockayne syndrome: Evidence for impaired development, premature aging, and neurodegeneration. Mech. Ageing. Dev. 130, 619–636.

    Article  CAS  PubMed  Google Scholar 

  31. Hashimoto S., Egly J.M. 2009. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum. Mol. Genet. 18, R224–230.

    Article  CAS  PubMed  Google Scholar 

  32. Kraemer K.H., Patronas N.J., Schiffmann R., Brooks B.P., Tamura D., DiGiovanna J.J. 2007. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: A complex genotype-phenotype relationship. Neuroscience. 145, 1388–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Bont R., van Larebeke N. 2004. Endogenous DNA damage in humans: A review of quantitative data. Mutagenesis. 19, 169–185.

    Article  PubMed  Google Scholar 

  34. Iwamoto T., Brooks P.J., Nishiwaki T., Nishimura K., Kobayashi N., Sugiura S., Mori T. 2014. Quantitative and in situ detection of oxidatively generated DNA damage 8,5′-cyclo-2′-deoxyadenosine using an immunoassay with a novel monoclonal antibody. Photochem. Photobiol. 90, 829–836.

    CAS  PubMed  Google Scholar 

  35. Dizdaroglu M., Jaruga P., Rodriguez H. 2001. Identification and quantification of 8,5′-cyclo-2′-deoxy-adenosine in DNA by liquid chromatography/mass spectrometry. Free Radic. Biol. Med. 30, 774–784.

    Article  CAS  PubMed  Google Scholar 

  36. Dizdaroglu M. 1986. Free-radical-induced formation of an 8,5′-cyclo-2′-deoxyguanosine moiety in deoxyribonucleic acid. Biochem. J. 238, 247–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jaruga P., Birincioglu M., Rodriguez H., Dizdaroglu M. 2002. Mass spectrometric assays for the tandem lesion 8,5′-cyclo-2′-deoxyguanosine in mammalian DNA. Biochemistry. 41, 3703–3711.

    Article  CAS  PubMed  Google Scholar 

  38. Birincioglu M., Jaruga P., Chowdhury G., Rodriguez H., Dizdaroglu M., Gates K.S. 2003. DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine). J. Am. Chem. Soc. 125, 11607–11615.

    Article  CAS  PubMed  Google Scholar 

  39. Jaruga P., Theruvathu J., Dizdaroglu M., Brooks P.J. 2004. Complete release of (5′S)-8,5′-cyclo-2′-deoxyadenosine from dinucleotides, oligodeoxynucleotides and DNA, and direct comparison of its levels in cellular DNA with other oxidatively induced DNA lesions. Nucleic Acids Res. 32, e87.

    Article  Google Scholar 

  40. Jaruga P., Xiao Y., Nelson B.C., Dizdaroglu M. 2009. Measurement of (5′R)-and (5′S)-8,5′-cyclo-2′-deoxyadenosines in DNA in vivo by liquid chromatography/ isotope-dilution tandem mass spectrometry. Biochem. Biophys. Res. Commun. 386, 656–660.

    Article  CAS  PubMed  Google Scholar 

  41. Kirkali G., Tunca M., Genc S., Jaruga P., Dizdaroglu M. 2008. Oxidative DNA damage in polymorphonuclear leukocytes of patients with familial Mediterranean fever. Free. Radic. Biol. Med. 44, 386–393.

    Article  CAS  PubMed  Google Scholar 

  42. Malins D.C., Anderson K.M., Jaruga P., Ramsey C.R., Gilman N.K., Green V.M., Rostad S.W., Emerman J.T., Dizdaroglu M. 2006. Oxidative changes in the DNA of stroma and epithelium from the female breast: Potential implications for breast cancer. Cell Cycle. 5, 1629–1632.

    Article  CAS  PubMed  Google Scholar 

  43. Kirkali G., de Souza-Pinto N.C., Jaruga P., Bohr V.A., Dizdaroglu M. 2009. Accumulation of (5′S)-8,5′-cyclo-2′-deoxyadenosine in organs of Cockayne syndrome complementation group B gene knockout mice. DNA Repair. 8, 274–278.

    Article  CAS  PubMed  Google Scholar 

  44. D’Errico M., Parlanti E., Teson M., Degan P., Lemma T., Calcagnile A., Iavarone I., Jaruga P., Ropolo M., Pedrini A.M., Orioli D., Frosina G., Zambruno G., Dizdaroglu M., Stefanini M., Dogliotti E. 2007. The role of CSA in the response to oxidative DNA damage in human cells. Oncogene. 26, 4336–4343.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Merecz.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 6, pp. 899–905.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merecz, A., Karwowski, B.T. DNA tandem lesion: 5′,8-cyclo-2′-deoxyadenosine. The influence on human health. Mol Biol 50, 793–798 (2016). https://doi.org/10.1134/S0026893316050125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316050125

Keywords

Navigation