Skip to main content
Log in

Beta-adrenoceptor-mediated cyclic AMP signal in different types of cultured nerve cells in normoxic and hypoxic conditions

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

β-adrenergic neurotransmission is an important factor regulating brain activity such as neuronal and glial survival, plasticity, membrane transport or cellular metabolism. Intracellular β-adrenergic signaling, via a stimulatory G protein (Gs), activates two major down-stream effectors, i.e., adenylyl cyclase (AC) and cAMP-dependent protein kinase A (PKA). The aim of this work was to study the ability of endogenous (adrenaline and noradrenaline) and exogenous (isoprenaline) β-adrenergic receptor agonists to increase cAMP in different types of nerve cells. Moreover, we wanted to precisely identify the receptor isoform involved in the observed phenomenon using selective β1-, β2- β3-adrenoceptor blockers. In an additional study, the negative influence of hypoxia on the AC/cAMP intracellular signaling system was tested. The study was conducted in parallel on rat primary glial (astrocytes) cultures, primary neuronal cultures, C6 glioma cells and human T98G glioma cells. The formation of [3H] cAMP by agonists and antagonists was measured in [3H] adenine prelabeled cells under normoxic and hypoxic conditions. The obtained results revealed that adrenaline, noradrenaline and isoprenaline strongly stimulated cAMP production in all tested cell types (with highest potency in C6 glioma cells). In glial and neuronal cells the adrenaline-evoked cAMP effect was mediated mainly by the β1-adrenoceptor, whereas in tumor cells the effect was probably mediated by all three β-subtype specific drugs. The AC/cAMP intracellular signaling system is affected by hypoxic conditions. Considering both physiological and therapeutic importance of β-family receptors the present work characterized the β-adrenoceptor-mediated cAMP signal transduction pathway in different nerve cells in normoxic and hypoxic conditions. The proposed in vitro model of hypoxic conditions may serve as a good model system to study the biological effects of endogenous catecholamines as well as potential therapeutics targeting adrenergic receptors, which are impaired during ischemia in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

adrenaline

cAMP:

adenosine-3',5'-cyclic monophosphate

CGP20712:

(±)-2-hydroxy-5-[2-[[2-hydroxy- 3-[4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy] propyl]-amino]ethoxy]-benzamide

DA:

dopamine

GFAP:

glial fibrillary acidic protein

GPCR:

G-protein-coupled receptors

IBMX:

3-isobutyl-1-methylxanthine, ICI118551, (±)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]- 2-butanol

IP:

isoprenaline

NA:

noradrenaline

PBS:

phosphate buffered saline

PDE:

phosphodiesterase

PRO:

propranolol

SR59230A:

3-(2-ethylphenoxy)-1-{[(1S)-1,2,3,4-tetrahydronaphth-1-yl]amino}-(2S)-2-propanol

AC:

adenylate cyclase

PKA:

protein kinase A

FBS:

fetal bovine serum

References

  1. Belujon P., Grace A.A. 2015. Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc. Biol. Sci. 282, 1805. doi 10.1098/rspb.2014.2516

    Article  Google Scholar 

  2. Day I.S., O’Neill E., Cawley C., Aretz N.K., Kilroy D., Gibney S.M., Harkin A., Connor, T.J. 2014. Noradrenaline acting on astrocytic β2-adrenoceptors induces neurite outgrowth in primary cortical neurons. Neuropharmacology. 77, 234–248.

    Article  CAS  PubMed  Google Scholar 

  3. Vardjan N., Kreft M., Zorec R. 2014. Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes. Glia. 62, 566–579.

    Article  PubMed  Google Scholar 

  4. Globus M.Y., Busto R., Dietrich W.D., Martinez E., Valdes I., Ginsberg M.D. 1988. Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J. Neurochem. 51, 1455–1464.

    Article  CAS  PubMed  Google Scholar 

  5. Laureys G., Clinckers R., Gerlo S., Spooren A., Wilczak N., Kooijman R., Smolders I., Michotte Y., De Keyser J. 2010. Astrocytic beta(2)-adrenergic receptors: From physiology to pathology. Prog. Neurobiol. 91, 189–199.

    Article  CAS  PubMed  Google Scholar 

  6. Milot M.R., Plamondon H. 2011. Changes in HPA reactivity and noradrenergic functions regulate spatial memory impairments at delayed time intervals following cerebral ischemia. Horm. Behav. 59, 594–604.

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka K. 2001. Alteration of second messengers during acute cerebral ischemia: Adenylate cyclase, cyclic AMP-dependent protein kinase, and cyclic AMP response element binding protein. Prog. Neurobiol. 65, 173–207.

    Article  CAS  PubMed  Google Scholar 

  8. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. 2010. Official J. Eur. Union. 53, L276.

    Google Scholar 

  9. The Polish governmental regulations concerning experiments on animals of 21 January 2005. Dziennik Ustaw. 33, 289.

    Google Scholar 

  10. Józwiak-Bebenista M., Dejda A., Nowak J.Z. 2007. Effects of PACAP, VIP and related peptides on cyclic AMP formation in rat neuronal and astrocyte cultures and cerebral cortical slices. Pharmacol. Rep. 59, 414–420.

    PubMed  Google Scholar 

  11. Nowak J.Z., Jozwiak-Bebenista M., Bednarek K. 2007. Effects of PACAP and VIP on cyclic AMP formation in rat neuronal and astrocyte cultures under normoxic and hypoxic condition. Peptides. 28, 1706–1712.

    Article  CAS  PubMed  Google Scholar 

  12. Hertz L., Juurlink B.H.J., Szuchet S. 1985. Cell cultures. In: Handbook of Neurochemistry, vol. 8. Ed. Lajtha A. New York: Plenum, pp. 603–661.

    Google Scholar 

  13. Shimizu H., Daly J.W., Creveling C.R. 1969. A radioisotopic method for measuring the formation of adenosine 3', 5'-cyclic monophosphate in incubated slices of brain. J. Neurochem. 16, 1609–1619.

    Article  CAS  PubMed  Google Scholar 

  14. Salomon Y., Londos C., Rodbell M. 1974. A highly sensitive adenylate cyclase assay. Anal. Biochem. 58, 541–548.

    Article  CAS  PubMed  Google Scholar 

  15. Hertz L., Chen Y., Gibbs M.E., Zang P., Peng L. 2004. Astrocytic adrenoceptors: a major drug target in neurological and psychiatric disorders? Curr. Drug Targets CNS Neurol. Disord. 3, 239–267.

    Article  CAS  PubMed  Google Scholar 

  16. Sokolowska P., Nowak J.Z. 2005. Constitutive activity of beta-adrenergic receptors in C6 glioma cells. Pharmacol. Rep. 57, 659–563.

    CAS  PubMed  Google Scholar 

  17. Junker V., Becker A., Hühne R., Zembatov M., Ravati A., Culmsee C., Krieglstein J. 2002. Stimulation of β-adrenoceptors activates astrocytes and provides neuroprotection. Eur. J. Pharmacol. 446, 25–36.

    Article  CAS  PubMed  Google Scholar 

  18. Lung H.L., Shan S.W., Tsang D., Leung K.N. 2005. Tumor necrosis factor-alpha mediates the proliferation of rat C6 glioma cells via beta-adrenergic receptors. J. Neuroimmunol. 166, 102–112.

    Article  CAS  PubMed  Google Scholar 

  19. Wiktorowska-Owczarek A., Namiecinska M., Berezinska M., Nowak J.Z. 2008. Characteristics of adrenaline-driven receptor-mediated signals in human microvessel-derived endothelial cells. Pharmacol. Rep. 60, 950–956.

    CAS  PubMed  Google Scholar 

  20. Hillman K.L., Doze V.A., Porter J.E. 2005. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus. J. Pharmacol. Exp. Ther. 314, 561–567.

    Article  CAS  PubMed  Google Scholar 

  21. Markus T., Hansson S.R., Cronberg T., Cilio C., Wieloch T., Ley D. 2010. β-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygenglucose deprivation in organotypic hippocampal slices. J. Neuroinflamm. 7, 94.

    Article  CAS  Google Scholar 

  22. Marien M.R., Colpaert F.C., Rosenquist A.C. 2004. Noradrenergic mechanisms in neurodegenerative diseases: A theory. Brain Res. Brain Res. Rev. 45, 38–78.

    Article  CAS  PubMed  Google Scholar 

  23. Arnsten A.F., Ramos B.P., Birnbaum S.G., Taylor J.R. 2005. Protein kinase A as a therapeutic target for memory disorders: Rationale and challenges. Trends Mol. Med. 11, 121–128.

    Article  CAS  PubMed  Google Scholar 

  24. Molenaar P., Parsonage W.A. 2005. Fundamental considerations of β-adrenoceptor subtypes in human heart failure. Trends Pharmacol. Sci. 26, 368–375.

    Article  CAS  PubMed  Google Scholar 

  25. Leblais V., Pourageaud F., Ivorra M.D., Guibert C., Marthan R., Muller B. 2004. Role of a-adrenergic receptors in the effect of the β-adrenergic receptor ligands, CGP 12177, bupranolol, and SR 59230A, on the contraction of rat intrapulmonary artery. J. Pharmacol. Exp. Ther. 309, 137–145.

    Article  CAS  PubMed  Google Scholar 

  26. Kaumann A.J., Engelhardt S., Hein L., Molenaar P., Lohse M. 2001. Abolition of (-)-CGP 12177-evoked cardiostimulation in double β12-adrenoceptor knockout mice. Obligatory role of β1-adrenoceptors for putative β4-adrenoceptor pharmacology. Naunyn-Schmiedeberg’s Arch. Pharmacol. 363, 87–93.

    CAS  Google Scholar 

  27. Molenaar P. 2003. The “state” of β-adrenoceptors. Br. J. Pharmacol. 140, 1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gubits R.M., Yu H., Casey G., Munell F., Vitek M.P. 1992. Altered genetic response to beta-adrenergic receptor activation in late passage C6 glioma cells. J. Neurosci. Res. 33, 297–305.

    Article  CAS  PubMed  Google Scholar 

  29. Munoz-Fernandez M.A., Armas-Portela R., Diaz-Nido J., Alonso J.L., Fresno M., Avila J. 1991. Differential effects of tumor necrosis factor on the growth and differentiation of neuroblastoma and glioma cells. Exp. Cell Res. 194, 161–164.

    Article  CAS  PubMed  Google Scholar 

  30. Van Kolen K., Slegers H. 2004. P2Y12 receptor stimulation inhibits beta-adrenergic receptor-induced differentiation by reversing the cyclic AMP-dependent inhibition of protein kinase B. J. Neurochem. 89, 442–453.

    Article  PubMed  Google Scholar 

  31. Kondo T., Setoguchi T., Taga T. 2004. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl. Acad. Sci. U. S. A. 101, 781–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Józwiak-Bebenista M., Kowalczyk E., Nowak J.Z. 2015. The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation. Pharmacol. Rep. 67, 332–338.

    Article  PubMed  Google Scholar 

  33. Grasselli F., Basini G., Bussolatti S., Bianco F. 2005. Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulose cells. Reprod. Fertil. Dev. 17, 715–720.

    Article  CAS  PubMed  Google Scholar 

  34. Kotake-Nara E., Takizawa S., Quan J., Wang H., Saida K. 2005. Cobalt chloride induces neurite outgrowth in rat pheochromocytoma PC-12 cells through regulation of endothelin-2/vasoactive intestinal contractor. J. Neurosci. Res. 81, 563–571.

    Article  CAS  PubMed  Google Scholar 

  35. Wang G., Hazra T.K., Mitra S., Lee H.M., Englander E.W. 2000. Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Res. 28, 2135–2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jóźwiak-Bębenista.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 5, pp. 838–846.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jóźwiak-Bębenista, M., Wiktorowska-Owczarek, A. & Kowalczyk, E. Beta-adrenoceptor-mediated cyclic AMP signal in different types of cultured nerve cells in normoxic and hypoxic conditions. Mol Biol 50, 740–747 (2016). https://doi.org/10.1134/S0026893316050071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316050071

Keywords

Navigation