Skip to main content
Log in

Nonstructural protein 1 of tick-borne encephalitis virus activates the expression of immunoproteasome subunits

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The interaction of viral proteins with host cell components plays an important role in antiviral immune response. One of the key steps of antiviral defense is the formation of immunoproteasomes. The effect of nonstructural protein 1 (NS1) of tick-borne encephalitis virus on the immunoproteasome formation was studied. It was shown that cell expression of NS1 does not reduce the efficacy of the immunoproteasome generation in response to interferon-γ stimulation and even increases the content of the immunoproteasome subunits without the interferon-γ treatment. Thus, NS1 of tick-borne encephalitis virus activates, rather than blocks the mechanisms of immune defense in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basler M., Kirk C.J., Groettrup M. 2013. The immunoproteasome in antigen processing and other immunological functions. Curr. Opin. Immunol. 25, 74–80.

    Article  CAS  PubMed  Google Scholar 

  2. Sewell A.K., Price D.A., Teisserenc H., Booth B.L., Jr., Gileadi U., Flavin F.M., Trowsdale J., Phillips R.E., Cerundolo V. 1999. IFN-gamma exposes a cryptic cytotoxic T lymphocyte epitope in HIV-1 reverse transcriptase. J. Immunol. 162, 7075–7079.

    CAS  PubMed  Google Scholar 

  3. Schwarz K., van den Broek M., de Giuli R., Seelentag W.W., Shastri N., Groettrup M. 2000. The use of LCMV-specific T cell hybridomas for the quantitative analysis of MHC class I restricted antigen presentation. J. Immunol. Meth. 237, 199–202.

    Article  CAS  Google Scholar 

  4. McCarthy M.K., Weinberg J.B. 2015. The immunoproteasome and viral infection: A complex regulator of inflammation. Front. Microbiol. 6, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  5. York I.A., Goldberg A.L., Mo X.Y., Rock K.L. 1999. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol. Rev. 172, 49–66.

    Article  CAS  PubMed  Google Scholar 

  6. Kloetzel P.M. 2001. Antigen processing by the proteasome. Nat. Rev. Mol. Cell. Biol. 2, 179–187.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrington D.A., Gregerson D.S. 2012. Immunoproteasomes: Structure, function, and antigen presentation. Prog. Mol. Biol. Transl. Sci. 109, 75–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ebstein F., Kloetzel P.M., Kruger E., Seifert U. 2012. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol. Life Sci. 69, 2543–2558.

    Article  CAS  PubMed  Google Scholar 

  9. Fink J., Gu F., Ling L., Tolfvenstam T., Olfat F., Chin K.C., Aw P., George J., Kuznetsov V.A., Schreiber M., Vasudevan S.G., Hibberd M.L. 2007. Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl. Trop. Dis. 1, e86.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pastorino B., Nougairede A., Wurtz N., Gould E., de Lamballerie X. 2010. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs. Antiviral. Res. 87, 281–294.

    Article  CAS  PubMed  Google Scholar 

  11. Pastorino B., Boucomont-Chapeaublanc E., Peyrefitte C.N., Belghazi M., Fusai T., Rogier C., Tolou H.J., Almeras L. 2009. Identification of cellular proteome modifications in response to West Nile virus infection. Mol. Cell Proteomics. 8, 1623–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Emara M.M., Brinton M.A. 2007. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc. Natl. Acad. Sci. U. S. A. 104, 9041–9046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chavez-Salinas S., Ceballos-Olvera I., Reyes-Del Valle J., Medina F., Del Angel R.M. 2008. Heat shock effect upon dengue virus replication into U937 cells. Virus Res. 138, 111–118.

    Article  CAS  PubMed  Google Scholar 

  14. Kanlaya R., Pattanakitsakul S.N., Sinchaikul S., Chen S.T., Thongboonkerd V. 2010. The ubiquitinproteasome pathway is important for dengue virus infection in primary human endothelial cells. J. Proteome Res. 9, 4960–4971.

    Article  CAS  PubMed  Google Scholar 

  15. Morrison J., Laurent-Rolle M., Maestre A.M., Rajsbaum R., Pisanelli G., Simon V., Mulder L.C., Fernandez-Sesma A., Garcia-Sastre A. 2013. Dengue virus coopts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog. 9, e1003265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anglero-Rodriguez Y.I., Pantoja P., Sariol C.A. 2014. Dengue virus subverts the interferon induction pathway via NS2B/3 protease-IkappaB kinase epsilon interaction. Clin. Vaccine Immunol. 21, 29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kundu K., Dutta K., Nazmi A., Basu A. 2013. Japanese encephalitis virus infection modulates the expression of suppressors of cytokine signaling (SOCS) in macrophages: Implications for the hosts’ innate immune response. Cell Immunol. 285, 100–110.

    Article  CAS  PubMed  Google Scholar 

  18. Wilson J.R., de Sessions P.F., Leon M.A., Scholle F. 2008. West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J. Virol. 82, 8262–8271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu C., Achazi K., Niedrig M. 2013. Tick-borne encephalitis virus triggers inositol-requiring enzyme 1 (IRE1) and transcription factor 6 (ATF6) pathways of unfolded protein response. Virus Res. 178, 471–477.

    Article  CAS  PubMed  Google Scholar 

  20. Robertson S.J., Lubick K.J., Freedman B.A., Carmody A.B., Best S.M. 2014. Tick-borne flaviviruses antagonize both IRF-1 and type I IFN signaling to inhibit dendritic cell function. J. Immunol. 192, 2744–2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akey D.L., Brown W.C., Dutta S., Konwerski J., Jose J., Jurkiw T.J., Del Proposto J., Ogata C.M., Skiniotis G., Kuhn R.J., Smith J.L. 2014. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science. 343, 881–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindenbach B.D., Rice C.M. 1997. trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication. J. Virol. 71, 9608–9617.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Avirutnan P., Hauhart R.E., Somnuke P., Blom A.M., Diamond M.S., Atkinson J.P. 2011. Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J. Immunol. 187, 424–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vercammen E., Staal J., Beyaert R. 2008. Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin. Microbiol. Rev. 21, 13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baronti C., Sire J., de Lamballerie X., Querat G. 2010. Nonstructural NS1 proteins of several mosquito-borne Flavivirus do not inhibit TLR3 signaling. Virology. 404, 319–330.

    Article  CAS  PubMed  Google Scholar 

  26. Aleshin S.E., Timofeev A.V., Khoretonenko M.V., Zakharova L.G., Pashvykina G.V., Stephenson J.R., Shneider A.M., Altstein A.D. 2005. Combined primeboost vaccination against tick-borne encephalitis (TBE) using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein. BMC Microbiol. 5, 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  28. Yang Y., Waters J.B., Fruh K., Peterson P.A. 1992. Proteasomes are regulated by interferon gamma: Implications for antigen processing. Proc. Natl. Acad. Sci. U. S. A. 89, 4928–4932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cruz M., Elenich L.A., Smolarek T.A., Menon A.G., Monaco J.J. 1997. DNA sequence, chromosomal localization, and tissue expression of the mouse proteasome subunit lmp10 (Psmb10) gene. Genomics. 45, 618–622.

    Article  CAS  PubMed  Google Scholar 

  30. Lyupina Yu.V., Bogatyrev M.E., Orlova A.Sh., Marjukhnich E.V., Kazansky D.B., Sharova N.P. 2013. Proteasomes in the brain of β2 microglobulin knockout mice. Biochemistry (Moscow). 78 (10), 1124–1133.

    CAS  PubMed  Google Scholar 

  31. Seifert U., Bialy L.P., Ebstein F., Bech-Otschir D., Voigt A., Schroter F., Prozorovski T., Lange N., Steffen J., Rieger M., Kuckelkorn U., Aktas O., Kloetzel P.M., Kruger E. 2010. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell. 142, 613–624.

    Article  CAS  PubMed  Google Scholar 

  32. Jung T., Hohn A., Grune T. 2013. The proteasome and the degradation of oxidized proteins: 2. Protein oxidation and proteasomal degradation. Redox Biol. 2C, 99–104.

    PubMed  Google Scholar 

  33. Ressing M.E., Horst D., Griffin B.D., Tellam J., Zuo J., Khanna R., Rowe M., Wiertz E.J. 2008. Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin. Cancer Biol. 18, 397–408.

    Article  CAS  PubMed  Google Scholar 

  34. Timofeev A.V. Kuzmenko Yu.V., Zharkova I.I., Starodubova E.S., Karpov V.L. 2013. Activation of transcription of immunoproteasome subunit genes in murine monocytes infected with different mycobacterial strains. Mol. Biol. (Moscow). 47 (2), 275–279.

    Article  CAS  Google Scholar 

  35. Krause S., Kuckelkorn U., Dorner T., Burmester G.R., Feist E., Kloetzel P.M. 2006. Immunoproteasome subunit LMP2 expression is deregulated in Sjogren’s syndrome but not in other autoimmune disorders. Ann. Rheum. Dis. 65, 1021–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Kuzmenko.

Additional information

Original Russian Text © Y.V. Kuzmenko, E.S. Starodubova, G.G. Karganova, A.V. Timofeev, V.L. Karpov, 2016, published in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 2, pp. 353–359.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmenko, Y.V., Starodubova, E.S., Karganova, G.G. et al. Nonstructural protein 1 of tick-borne encephalitis virus activates the expression of immunoproteasome subunits. Mol Biol 50, 307–312 (2016). https://doi.org/10.1134/S0026893316020126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316020126

Keywords

Navigation