Skip to main content
Log in

Downregulation of OGDHL expression is associated with promoter hypermethylation in colorectal cancer

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Cell metabolic reprogramming is one of the cancer hallmarks. Glycolysis activation, along with suppression of oxidative phosphorylation and, to a lower extent, the TCA cycle, occurs in the majority of malignant tumors. A bioinformatics search for the glucose metabolism genes that are differentially expressed in colorectal cancer (CC) was performed using the data of The Cancer Genome Atlas (TCGA) Project. OGDHL for an oxoglutarate dehydrogenase complex subunit, which is involved in the TCA cycle and is indirectly responsible for the induction of apoptosis, was identified as one of the most promising candidates. A quantitative PCR analysis showed, on average, an eightfold downregulation of OGDHL in 50% (15/30) of CC samples. Based on the TCGA data, promoter hypermethylation was assumed to be a major mechanism of OGDHL inactivation. Bisulfite sequencing identified the OGDHL promoter region (+327…+767 relative to the transcription start site) that is often methylated in CC samples with downregulated ODGHL expression (80%, 8/10) and is possibly crucial for gene inactivation. Thus, frequent and significant OGDHL downregulation due to hypermethylation of a specific promoter region was demonstrated for CC. The OGDHL promoter methylation pattern was assumed to provide a marker for differential diagnosis of CIMP+ (CpG island methylator phenotype) tumors, which display dense hypermethylation of the promoter region in many genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warburg O., Wind F., Negelein E. 1927. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Krasnov G.S., Dmitriev A.A., Lakunina V.A., Kirpiy A.A., Kudryavtseva A.V. 2013. Targeting VDAC-bound hexokinase II: A promising approach for concomitant anti-cancer therapy. Expert Opin. Ther. Targets. 17, 1221–1233.

    Article  CAS  PubMed  Google Scholar 

  3. Krasnov G.S., Dmitriev A.A., Snezhkina A.V., Kudryavtseva A.V. 2013. Deregulation of glycolysis in cancer: Glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Exp. Opin. Ther. Targets. 17, 681–693.

    Article  CAS  Google Scholar 

  4. Shoshan-Barmatz V., Mizrachi D. 2012. VDAC1: From structure to cancer therapy. Front. Oncol. 2, 164.

  5. Siegel R., Naishadham D., Jemal A. 2013. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30.

    Article  PubMed  Google Scholar 

  6. Bunik V., Kaehne T., Degtyarev D., Shcherbakova T., Reiser G. 2008. Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart. FEBS J. 275, 4990–5006.

    Article  CAS  PubMed  Google Scholar 

  7. Bunik V.I., Degtyarev D. 2008. Structure-function relationships in the 2-oxo acid dehydrogenase family: Substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins. Proteins. 71, 874–890.

    Article  CAS  PubMed  Google Scholar 

  8. Krasnov G.S., Oparina N.Y., Dmitriev A.A., Kudryavtseva A.V., Anedchenko E.A., Kondrat’eva T.T., Zabarovsky E.R., Senchenko V.N. 2011. RPN1, a new reference gene for quantitative data normalization in lung and kidney cancer. Mol. Biol. (Moscow). 45, 211–220.

    Article  CAS  Google Scholar 

  9. Senchenko V.N., Krasnov G.S., Dmitriev A.A., Kudryavtseva A.V., Anedchenko E.A., Braga E.A., Pronina I.V., Kondratieva T.T., Ivanov S.V., Zabarovsky E.R., Lerman M.I. 2011. Differential expression of CHL1 gene during development of major human cancers. PLOS ONE. 6, e15612.

  10. Kudriavtseva A.V., Anedchenko E.A., Oparina N.Y., Krasnov G.S., Kashkin K.N., Dmitriev A.A., Zborovskaya I.B., Kondratjeva T.T., Vinogradova E.V., Zinovyeva M.V., Kopantsev E.P., Senchenko V.N. 2009. Expression of FTL and FTH genes encoding ferritin subunits in lung and renal carcinomas. Mol. Biol. (Moscow). 43, 972–981.

    Article  CAS  Google Scholar 

  11. Shi M., Cui J., Du J., Wei D., Jia Z., Zhang J., Zhu Z., Gao Y., Xie K. 2014. A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clin. Cancer Res. 20, 4370–4380.

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira L.M. 2010. Cancer metabolism: The Warburg effect today. Exp. Mol. Pathol. 89, 372–380.

    Article  CAS  PubMed  Google Scholar 

  13. Vander Heiden M.G., Cantley L.C., Thompson C.B. 2009. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324, 1029–1033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lopez-Lazaro M. 2008. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med. Chem. 8, 305–312.

    Article  CAS  PubMed  Google Scholar 

  15. Ruckenstuhl C., Buttner S., Carmona-Gutierrez D., Eisenberg T., Kroemer G., Sigrist S.J., Frohlich K.U., Madeo F. 2009. The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer. PLOS ONE. 4, e4592.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dmitriev A.A., Kashuba V.I., Haraldson K., Senchenko V.N., Pavlova T.V., Kudryavtseva A.V., Anedchenko E.A., Krasnov G.S., Pronina I.V., Loginov V.I., Kondratieva T.T., Kazubskaya T.P., Braga E.A., Yenamandra S.P., Ignatjev I., Ernberg I., Klein G., Lerman M.I., Zabarovsky E.R. 2012. Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics. 7, 502–513.

    Article  CAS  PubMed  Google Scholar 

  17. Dmitriev A.A., Rudenko E.E., Kudryavtseva A.V., Krasnov G.S., Gordiyuk V.V., Melnikova N.V., Stakhovsky E.O., Kononenko O.A., Pavlova L.S., Kondratieva T.T., Alekseev B.Y., Braga E.A., Senchenko V.N., Kashuba V.I. 2014. Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. Biomed. Res. Int. 2014, 735292.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hoque M.O., Kim M.S., Ostrow K.L., Liu J., Wisman G.B., Park H.L., Poeta M.L., Jeronimo C., Henrique R., Lendvai A., Schuuring E., Begum S., Rosenbaum E., Ongenaert M., Yamashita K., Califano J., Westra W., van der Zee A.G., van Criekinge W., Sidransky D. 2008. Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res. 68, 2661–2670.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ostrow K.L., Park H.L., Hoque M.O., Kim M.S., Liu J., Argani P., Westra W., Van Criekinge W., Sidransky D. 2009. Pharmacologic unmasking of epigenetically silenced genes in breast cancer. Clin. Cancer Res. 15, 1184–1191.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sen T., Sen N., Noordhuis M.G., Ravi R., Wu T.C., Ha P.K., Sidransky D., Hoque M.O. 2012. OGDHL is a modifier of AKT-dependent signaling and NF-kappaB function. PLOS ONE. 7, e48770.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chowdhury I., Tharakan B., Bhat G.K. 2006. Current concepts in apoptosis: The physiological suicide program revisited. Cell. Mol. Biol. Lett. 11, 506–525.

    Article  CAS  PubMed  Google Scholar 

  22. Korsmeyer S.J., Wei M.C., Saito M., Weiler S., Oh K.J., Schlesinger P.H. 2000. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7, 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  23. Chiara F., Castellaro D., Marin O., Petronilli V., Brusilow W.S., Juhaszova M., Sollott S.J., Forte M., Bernardi P., Rasola A. 2008. Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltagedependent anion channels. PLOS ONE. 3, e1852.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wu C.C., Bratton S.B. 2013. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid. Redox Signal. 19, 546–558.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Starkov A.A., Fiskum G., Chinopoulos C., Lorenzo B.J., Browne S.E., Patel M.S., Beal M.F. 2004. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24, 7779–7788.

    Article  CAS  PubMed  Google Scholar 

  26. D’Alessio M., De Nicola M., Coppola S., Gualandi G., Pugliese L., Cerella C., Cristofanon S., Civitareale P., Ciriolo M.R., Bergamaschi A., Magrini A., Ghibelli L. 2005. Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J. 19, 1504–1506.

    PubMed  Google Scholar 

  27. Petrosillo G., Ruggiero F.M., Pistolese M., Paradies G. 2001. Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett. 509, 435–438.

    Article  CAS  PubMed  Google Scholar 

  28. Chen F. 2012. JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res. 72, 379–386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Circu M.L., Aw T.Y. 2010. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Liu H., Lo C.R., Czaja M.J. 2002. NF-kappaB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun. Hepatology. 35, 772–778.

    Article  CAS  PubMed  Google Scholar 

  31. Deng Y., Ren X., Yang L., Lin Y., Wu X. 2003. A JNKdependent pathway is required for TNFalpha-induced apoptosis. Cell. 115, 61–70.

    Article  CAS  PubMed  Google Scholar 

  32. Cao J., Xu D., Wang D., Wu R., Zhang L., Zhu H., He Q., Yang B. 2009. ROS-driven Akt dephosphorylation at Ser-473 is involved in 4-HPR-mediated apoptosis in NB4 cells. Free Radic. Biol. Med. 47, 536–547.

    Article  CAS  PubMed  Google Scholar 

  33. Hoesel B., Schmid J.A. 2013. The complexity of NFkappaB signaling in inflammation and cancer. Mol. Cancer. 12, 86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Dan H.C., Cooper M.J., Cogswell P.C., Duncan J.A., Ting J.P., Baldwin A.S. 2008. Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev. 22, 1490–1500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wang W.H., Chen J., Zhao F., Zhang B.R., Yu H.S., Jin H.Y., Dai J.H. 2014. MiR-150-5p suppresses colorectal cancer cell migration and invasion through targeting MUC4. Asian Pac. J. Cancer Prev. 15, 6269–6273.

    Article  PubMed  Google Scholar 

  36. Simons C.C., Hughes L.A., Smits K.M., Khalid-de Bakker C.A., de Bruine A.P., Carvalho B., Meijer G.A., Schouten L.J., van den Brandt P.A., Weijenberg M.P., van Engeland M. 2013. A novel classification of colorectal tumors based on microsatellite instability, the CpG island methylator phenotype and chromosomal instability: implications for prognosis. Ann. Oncol. 24, 2048–2056.

    Article  CAS  PubMed  Google Scholar 

  37. Hinoue T., Weisenberger D.J., Lange C.P., Shen H., Byun H.M., Van Den Berg D., Malik S., Pan F., Noushmehr H., van Dijk C.M., Tollenaar R.A., Laird P.W. 2012. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 22, 271–282.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Barault L., Charon-Barra C., Jooste V., de la Vega M.F., Martin L., Roignot P., Rat P., Bouvier A.M., Laurent Puig P., Faivre J., Chapusot C., Piard F. 2008. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 68, 8541–8546.

    Article  CAS  PubMed  Google Scholar 

  39. Moon J.W., Lee S.K., Lee J.O., Kim N., Lee Y.W., Kim S.J., Kang H.J., Kim J., Kim H.S., Park S.H. 2014. Identification of novel hypermethylated genes and demethylating effect of vincristine in colorectal cancer. J. Exp. Clin. Cancer Res. 33, 4.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Bullard J.H., Purdom E., Hansen K.D., Dudoit S. 2010. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform. 11, 94.

    Article  Google Scholar 

  41. Anders S., Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol. 11, R106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kheirelseid E.A., Chang K.H., Newell J., Kerin M.J., Miller N. 2010. Identification of endogenous control genes for normalisation of real-time quantitative PCR data in colorectal cancer. BMC Mol Biol. 11, 12.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Dijkstra J.R., van Kempen L.C., Nagtegaal I.D., Bustin S.A. 2014. Critical appraisal of quantitative PCR results in colorectal cancer research: Can we rely on published qPCR results? Mol. Oncol. 8, 813–818.

    Article  CAS  PubMed  Google Scholar 

  44. Dydensborg A.B., Herring E., Auclair J., Tremblay E., Beaulieu J.F. 2006. Normalizing genes for quantitative RT-PCR in differentiating human intestinal epithelial cells and adenocarcinomas of the colon. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1067–G1074.

    Article  CAS  PubMed  Google Scholar 

  45. Krzystek-Korpacka M., Diakowska D., Bania J., Gamian A. 2014. Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: Implications for finding suitable normalizers for inflammatory bowel disease studies. Inflamm. Bowel Dis. 20, 1147–1156.

    Article  PubMed  Google Scholar 

  46. Oparina N.Y., Snezhkina A.V., Sadritdinova A.F., Veselovskii V.A., Dmitriev A.A., Senchenko V.N., Mel’nikova N.V., Speranskaya A.S., Darii M.V., Stepanov O.A., Barkhatov I.M., Kudryavtseva A.V. 2013. Differential expression of genes that encode glycolysis enzymes in kidney and lung cancer in humans. Russ. J. Genet. 49, 707–716.

    Article  CAS  Google Scholar 

  47. Nihon-Yanagi Y., Terai K., Murano T., Kawai T., Kimura S., Okazumi S. 2013. ß-2 microglobulin is unsuitable as an internal reference gene for the analysis of gene expression in human colorectal cancer. Biomed. Rep. 1, 193–196.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Tominaga N., Hagiwara K., Kosaka N., Honma K., Nakagama H., Ochiya T. 2014. RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Mol. Cancer. 13, 134.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Fujiwara T., Takahashi R.U., Kosaka N., Nezu Y., Kawai A., Ozaki T., Ochiya T. 2014. RPN2 gene confers osteosarcoma cell malignant phenotypes and determines clinical prognosis. Mol. Ther. Nucleic Acids. 3, e189.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Takahashi R.U., Takeshita F., Honma K., Ono M., Kato K., Ochiya T. 2013. Ribophorin II regulates breast tumor initiation and metastasis through the functional suppression of GSK3beta. Sci. Rep. 3, 2474.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Krasnov.

Additional information

The authors equally contributed to this work.

Original Russian Text © M.S. Fedorova, A.V. Kudryavtseva, V.A. Lakunina, A.V. Snezhkina, N.N. Volchenko, E.N. Slavnova, T.V. Danilova, A.F. Sadritdinova, N.V. Melnikova, A.A. Belova, K.M. Klimina, D.V. Sidorov, B.Ya. Alekseev, A.D. Kaprin, A.A. Dmitriev, G.S. Krasnov, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 4, pp. 678–688.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, M.S., Kudryavtseva, A.V., Lakunina, V.A. et al. Downregulation of OGDHL expression is associated with promoter hypermethylation in colorectal cancer. Mol Biol 49, 608–617 (2015). https://doi.org/10.1134/S0026893315040044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315040044

Keywords

Navigation