Skip to main content
Log in

Transcriptome analysis of human breast cancer cell lines MCF-7 and MDA-MB-435 by RNA-Seq

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The transcriptomic profiles of human breast cancer cell lines MCF-7 and MDA-MB-435 were investigated using the next-generation RNA sequencing (RNA-Seq). The DESeq package was used to screen the differentially expressed transcripts. A total of 229 genes with a significantly differential expression in MDA-MB-435 cells as compared with MCF-7 cells were obtained. Annotation of the biological functions of these genes through the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 demonstrated that the 229 differentially expressed genes were mainly implicated in the biological functions related to cell adhesion and motion, antigen processing and presentation (via MHC class II), hormone response, extracellular structure organization, tissue remodeling, and cell proliferation regulation. Analysis of the individual genes demonstrated that MDA-MB-435 cells exhibited a higher tendency to metastasis and antigen processing and presentation, and lower ability to hormone response. Twenty most abundant transcripts in MDA-MB-435 cells, such as VIM, TNC, and CD74, represent its high potential for metastasis. Besides the genes previously reported to be involved in tumor metastasis and development, genes newly identified in this study could provide new clues for the diagnosis and prognosis of aggressive breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lacroix M., Leclercq G. 2004. Relevance of breast cancer cell lines as models for breast tumours: An update. Breast Cancer Res. Treat. 83, 249–289.

    Article  CAS  PubMed  Google Scholar 

  2. Soule H.D., Vazguez J., Long A., Albert S., Brennan M. 1973. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51, 1409–1416.

    CAS  PubMed  Google Scholar 

  3. Zhang R.D., Fidler I.J., Price J.E. 1991. Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion Metastasis. 11, 204–215.

    CAS  PubMed  Google Scholar 

  4. Moll R. 1991. Molecular diversity of cytokeratins: Significance for cell and tumor differentiation. Acta Histochem. Suppl. 41, 117–127.

    Google Scholar 

  5. Nerlich A.G., Bachmeier B.E. 2013. Density-dependent lineage instability of MDA-MB-435 breast cancer cells. Oncol. Lett. 5, 1370–1374.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Cailleau R., Olivé M., Cruciger Q.V. 1978. Long-term human breast carcinoma cell lines of metastatic origin: Preliminary characterization. In Vitro. 14, 911–915.

    Article  CAS  PubMed  Google Scholar 

  7. Rae J.M., Creighton C.J., Meck J.M., Haddad B.R., Johnson M.D. 2007. MDA-MB-435 cells are derived from M14 melanoma cells: A loss for breast cancer, but a boon for melanoma research. Breast Cancer Res. Treat. 104, 13–19.

    Article  PubMed  Google Scholar 

  8. Chambers A.F. 2009. MDA-MB-435 and M14 cell lines: Identical but not M14 melanoma?. Cancer Res. 69, 5292–5293.

    Article  CAS  PubMed  Google Scholar 

  9. Nobukawa B., Fujii H., Hirai S., Kumasaka T., Shimizu H., Matsumoto T., Suda K., Futagawa S. 1999. Breast carcinoma diverging to aberrant melanocytic differentiation: A case report with histopathologic and loss of heterozygosity analyses. Am. J. Surg. Pathol. 23, 1280–1287.

    Article  CAS  PubMed  Google Scholar 

  10. Yen H., Florentine B., Kelly L.K., Bu X., Crawford J., Martin S.E. 2000. Fine-needle aspiration of a metaplastic breast carcinoma with extensive melanocytic differentiation: A case report. Diagn. Cytopathol. 23, 46–50.

    Article  CAS  PubMed  Google Scholar 

  11. Bachmeier B.E., Nerlich A.G., Mirisola V., Jochum M., Pfeffer U. 2008. Lineage infidelity and expression of melanocytic markers in human breast cancer. Int. J. Oncol. 33, 1011–1015.

    CAS  PubMed  Google Scholar 

  12. Hollestelle A., Schutte M. 2009. Comment Re: MDA-MB-435 and M14 cell lines: Identical but not M14 Melanoma?. Cancer Res. 69, 7893.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z., Gerstein M., Snyder M. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wang T., Cui Y., Jin J., Guo J., Wang G., Yin X., He Q.Y., Zhang G. 2013. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific. Nucleic Acids Res. 41, 4743–4754.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. van Verk M.C., Hickman R., Pieterse C.M., van Wees S.C. 2013. RNA-Seq: Revelation of the messengers. Trends Plant Sci. 18, 175–179.

    Article  PubMed  Google Scholar 

  16. Anders S., Huber W. 2013. Differential expression of RNA-Seq data at the gene level: The DESeq package. http://www.bioconductor.org/packages/devel/bioc/vignettes/DESeq/inst/doc/DESeq.pdf.

    Google Scholar 

  17. Bloom J.S., Khan Z., Kruglyak L., Singh M., Caudy A.A. 2009. Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics. 10, 221.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Anders S., Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol. 11, R106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huang da W., Sherman B.T., Lempicki R.A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

    Article  CAS  Google Scholar 

  20. Huang da W., Sherman B.T., Lempicki R.A. 2009. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13.

    Article  PubMed Central  Google Scholar 

  21. Zeisberg M., Neilson E.G. 2009. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429–1437.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tsunoda T., Inada H., Kalembeyi I., Imanaka-Yoshida K., Sakakibara M., Okada R., Katsuta K., Sakakura T., Majima Y., Yoshida T. 2003. Involvement of large tenascin-C splice variants in breast cancer progression. Am. J. Pathol. 162, 1857–1867.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Oskarsson T., Acharyya S., Zhang X.H., Vanharanta S., Tavazoie S.F., Morris P.G., Downey R.J., Manova-Todorova K., Brogi E., Massagué J. 2011. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zheng Y.X., Yang M., Rong T.T., Yuan X.L., Ma Y.H., Wang Z.H., Shen L.S., Cui L. 2012. CD74 and macrophage migration inhibitory factor as therapeutic targets in gastric cancer. World J. Gastroenterol. 18, 2253–2261.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Charafe-Jauffret E., Ginestier C., Monville F., Finetti P., Adélaide J., Cervera N., Fekairi S., Xerri L., Jacquemier J., Birnbaum D., Bertucci F. 2006. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene. 25, 2273–2284.

    Article  CAS  PubMed  Google Scholar 

  26. Ju J.H., Yang W., Lee K.M., Oh S., Nam K., Shim S., Shin S.Y., Gye M.C., Chu I.S., Shin I. 2013. Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clin. Cancer Res. 19, 4335–4346.

    Article  CAS  PubMed  Google Scholar 

  27. Lacroix M. 2006. Significance, detection and markers of disseminated breast cancer cells. Endocr. Relat. Cancer. 13, 1033–1067.

    Article  CAS  PubMed  Google Scholar 

  28. Charafe-Jauffret E., Monville F., Bertucci F., Esterni B., Ginestier C., Finetti P., Cervera N., Geneix J., Hassanein M., Rabayrol L., Sobol H., Taranger-Charpin C., Xerri L., Viens P., Birnbaum D., Jacquemier J. 2007. Moesin expression is a marker of basal breast carcinomas. Int. J. Cancer. 121, 1779–1785.

    Article  CAS  PubMed  Google Scholar 

  29. Moreno-Bueno G., Salvador F., Martín A., Floristán A., Cuevas E.P., Santos V., Montes A., Morales S., Castilla M.A., Rojo-Sebastián A., Martínez A., Hardisson D., Csiszar K., Portillo F., Peinado H., Palacios J., Cano A. 2011. Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas. EMBO Mol. Med. 3, 528–544.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Moon H.J., Finney J., Xu L., Moore D., Welch D.R., Mure M. 2013. MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro. J. Biol. Chem. 288, 30000–30008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Calvo A., Catena R., Noble M.S., Carbott D., Gil-Bazo I., Gonzalez-Moreno O., Huh J.I., Sharp R., Qiu T.H., Anver M.R., Merlino G., Dickson R.B., Johnson M.D., Green J.E. 2008. Identification of VEGF-regulated genes associated with increased lung metastatic potential: Functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene. 27, 5373–5384.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sahu S.N., Nunez S., Bai G., Gupta A. 2007. Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells. Am. J. Physiol. Cell Physiol. 292, 2288–2296.

    Article  Google Scholar 

  33. Chen P.W., Kroog G.S. 2010. Leupaxin is similar to paxillin in focal adhesion targeting and tyrosine phosphorylation but has distinct roles in cell adhesion and spreading. Cell Adh. Migr. 4, 527–540.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Bist P., Leow S.C., Phua Q.H., Shu S., Zhuang Q., Loh W.T., Nguyen T.H., Zhou J.B., Hooi S.C., Lim L.H. 2011. Annexin-1 interacts with NEMO and RIP1 to constitutively activate IKK complex and NF-κB: Implication in breast cancer metastasis. Oncogene. 30, 3174–3185.

    Article  CAS  PubMed  Google Scholar 

  35. Kang H., Ko J., Jang S.W. 2012. The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells. Biochem. Biophys. Res. Commun. 423, 188–194.

    Article  CAS  PubMed  Google Scholar 

  36. Campoli M., Chang C.C., Oldford S.A., Edgecombe A.D., Drover S., Ferrone S. 2004. HLA antigen changes in malignant tumors of mammary epithelial origin: Molecular mechanisms and clinical implications. Breast Dis. 20, 105–125.

    CAS  PubMed  Google Scholar 

  37. Pardoll D.M., Topalian S.L. 1998. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol. 10, 588–594.

    Article  CAS  PubMed  Google Scholar 

  38. Redondo M., García J., Villar E., Rodrigo I., PereaMilla E., Serrano A., Morell M. 2003. Major histocompatibility complex status in breast carcinogenesis and relationship to apoptosis. Hum. Pathol. 34, 1283–1289.

    Article  CAS  PubMed  Google Scholar 

  39. Oldford S.A., Robb J.D., Watson P.H., Drover S. 2004. HLA-DRB alleles are differentially expressed by tumor cells in breast carcinoma. Int. J. Cancer. 112, 399–406.

    Article  CAS  PubMed  Google Scholar 

  40. Möller P., Mattfeldt T., Gross C., Schlosshauer P., Koch A., Koretz K., Moldenhauer G., Kaufmann M., Otto H.F. 1989. Expression of HLA-A, -B, -C, -DR, -DP, -DQ, and of HLA-D-associated invariant chain (Ii) in non-neoplastic mammary epithelium, fibroadenoma, adenoma, and carcinoma of the breast. Am. J. Pathol. 135, 73–83.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Liu.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 2, pp. 279–288.

The article is published in the original.

Contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C.H., Gao, X.J., Liao, S.Y. et al. Transcriptome analysis of human breast cancer cell lines MCF-7 and MDA-MB-435 by RNA-Seq. Mol Biol 49, 244–252 (2015). https://doi.org/10.1134/S0026893315020144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315020144

Keywords

Navigation