Skip to main content
Log in

Antimicrobial Activity of Bacteria Isolated from the Millipedes Nedyopus dawydoffiae and Orthomorpha sp.

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

From the intestines of millipedes of the species Nedyopus dawydoffiae and Orthomorpha sp. (class Diplopoda) and from their food substrates (plant residues), 72 bacterial strains belonging to 25 genera were isolated and identified. Among the studied strains, actinobacteria predominated, among which streptomycetes were the most numerous, although representatives of 14 other genera of actinobacteria were also present. High abundance of actinobacteria with antimicrobial activity was noted, including members of the “rare” genera Actinoplanes, Amycolatopsis, Kitasatospora, Lechevalieria, Micromonospora, Nocardiopsis, and Saccharopolyspora. This is the first report on antimicrobial activity in Kitasatospora saccharophila INA 01226 and Nocardiopsis umidischolae INA 01230. Heterogeneity in terms of antibiotic formation in the populations of Streptomyces pratensis and S. termitum was shown. The most promising bacterial strains chosen for the chemical study of antibiotics formed exhibited activity against methicillin-resistant Staphylococcus aureus INA 00761 (MRSA) and vancomycin-resistant strain Leuconostoc mesenteroides VKPM B-4177 (VRLM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bérdy, J., Bioactive microbial metabolites, J. Antibiot., 2005, vol. 58, pp. 1–26.

    Article  Google Scholar 

  2. Bergey, D.H., Bergey’s Manual of Systematic Bacteriology, Holt, J., Krieg, N.R., Sneath, P.H.A., Staley, J.T., and William, S.T., Eds., Baltimore: Williams & Wilkins, 1984.

    Google Scholar 

  3. Byzov, B.A., Zenova, G.M., Babkina, N.I., Dobrovol’-skaya, T.G., Tret’yakova, E.B., and Zvyagintsev, D.G., Actinomycetes in the food, gut, and feces of soil multipedes Pahyiulis flavipes C.L. Koch., Mikrobiology (Moscow), 1993, vol. 62, pp. 916–927.

    Google Scholar 

  4. Byzov, B.A., Zoomikrobnye vzaimodeistviya v pochve (Zoomicrobial Interactions in Soil), Moscow: GEOS, 2005.

  5. Chernov, T.I., Zhelezova, A.D., Tkhakakhova, A.K., Bgazhba, N.A., and Zverev, A.O., Microbiomes of virgin soils of Southern Vietnam tropical forests, Microbiology (Moscow), 2019, vol. 88, pp. 489‒498.

    Article  CAS  Google Scholar 

  6. Deshcherevskaya, O.A., Avilov, V.K., Dinh, B.D., Tran, C.H., Kurbatova, J.A., Modern climate of the Cát Tiên National Park (Southern Vietnam): climatological data for ecological studies, Izv. Atmos. Ocean. Phys., 2013, vol. 49, no. 8, pp. 819–838.

    Article  Google Scholar 

  7. Donadio, S., Brandi, L., Monciardini, P., Sosio, M., and Gualerzi, C.O., Novel assays and novel strains – promising routes to new antibiotics?, Expert Opin. Drug Discov., 2007, vol. 2, pp. 789–798.

    Article  CAS  Google Scholar 

  8. Efimenko, T.A., Malanicheva, I.A., Vasil’eva, B.F., Glukhova, A.A., Sumarukova, I.G., Boikova, Y.V., Mal-kina, N.D., Terekhova, L.P., and Efremenkova, O.V., Antibiotic activity of bacterial endobionts of basidiomycete fruit bodies, Microbiology (Moscow), 2016, vol. 85, pp. 752‒758.

    Article  CAS  Google Scholar 

  9. Efimenko, T.A., Terekhova, L.P., and Efremenkova, O.V., Current state the problem of antibiotic resistance of pathogens, Antibiot. Chemother., 2019, vol. 64, nos. 5–6, pp. 64‒68.

    CAS  Google Scholar 

  10. Efimenko, T.A., Glukhova, A.A., Demiankova, M.V., Boykova, Y.V., Malkina, N.D., Sumarukova, I.G., Vasilieva, B.F., Rogozhin, E.A., Ivanov, I.A., Krassilnikov, V.A., and Efremenkova, O.V., Antimicrobial activity of microorganisms isolated from ant nests of Lasius niger, Life, 2020, vol. 10, p. 91.

    Article  CAS  Google Scholar 

  11. Fukami, A., Nakamura, T., Kawaguchi, K., Rho, M.C., Matsumoto, A., Takahashi, Y., Shiomi, K., Hayashi, M., Komiyama, K., and Omura, S., A new antimicrobial antibiotic from Actinoplanes capillaceus sp. K95-5561T, J. Antibiot. (Tokyo), 2000, vol. 53, pp. 1212–1214.

    Article  CAS  Google Scholar 

  12. Gause, G.F., The Struggle for Existence, Baltimore: Williams & Wilkins, 1934.

    Book  Google Scholar 

  13. Gause, G.F., Preobrazhenskaya, T.P., Sveshnikova, M.L., Terekhova, L.P., and Maksimova, T.S., Opredelitel’ aktinomycetov (Manual on Identification of Actinomycetes). Moscow: Nauka, 1983.

  14. Glukhova, A.A., Karabanova, A.A., Yakushev, A.V., Semenyuk, I.I., Boykova, Yu.V., Malkina, N.D., Efimenko, T.A., Ivankova, T.D., Terekhova, L.P., and Efremenkova, O.V., Antibiotic activity of Actinobacteria from the digestive tract of millipede Nedyopus dawydoffiae (Diplopoda), Antibiotics (Basel), 2018, vol. 7, no. 4, p. 94.

    Article  CAS  Google Scholar 

  15. Hu, D., Sun, C., Jin, T., Fan, G., Mok, K.M., Li, K., and Lee, S.M., Exploring the potential of antibiotic production from rare Actinobacteria by whole-genome sequencing and guided MS/MS analysis, Front. Microbiol., 2020, vol. 11, p. 1540.

    Article  Google Scholar 

  16. O’Neill, J., The Review on Antimicrobial Resistance. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations, 2016. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.

  17. Kaltenpoth, M., Actinobacteria as mutualists: general healthcare for insects?, Trends Microbiol., 2009, vol. 17, pp. 529–535.

    Article  CAS  Google Scholar 

  18. Kirby, B.M. and Meyers, P.R., Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 1328–1333.

    Article  CAS  Google Scholar 

  19. Knapp, B.A., Seeber, J., Rief, A., Meyer, E., and Insam, H., Bacterial community composition of the gut microbiota of Cylindroiulus fulviceps (Diplopoda) as revealed by molecular fingerprinting and cloning, Folia Microbiol., 2010, vol. 55, pp. 489–496.

    Article  CAS  Google Scholar 

  20. Intestinal Microorganisms of Termites and Other Invertebrates, König, H. and Varma, A., Eds., Berlin Heidelberg: Springer-Verlag, 2006.

    Google Scholar 

  21. Li, B., Furihata, K., Kudo, T., and Yokota, A., Kitasatospora saccharophila sp. nov. and Kitasatospora kazusanensis sp. nov., isolated from soil and transfer of Streptomyces atroaurantiacus to the genus Kitasatospora as Kitasatospora atroaurantiaca comb. nov., J. Gen. Appl. Microbiol., 2009, vol. 55, pp. 19–26.

    Article  CAS  Google Scholar 

  22. Peltola, J.S., Andersson, M.A., Kämpfer, P., Auling, G., Kroppenstedt, R.M., Busse, H.J., Salkinoja-Salonen, M.S., and Rainey, F.A., Isolation of toxigenic Nocardiopsis strains from indoor environments and description of two new Nocardiopsis species, N. exhalans sp. nov. and N. umidischolae sp. nov., Appl. Environ. Microbiol., 2001, vol. 67, pp. 4293–4304.

    Article  CAS  Google Scholar 

  23. Polyanskaya, L.M., Babkina, N.I., Zenova, G.M., and Zvyagintsev, D.G., Fate of actinomycetes in the intestinal tract of soil invertebrates fed on streptomycete spores, Microbiology (Moscow), 1996, vol. 65, pp. 493‒498.

    Google Scholar 

  24. Raja, A. and Prabakarana, P., Actinomycetes and drug—an overview, Am. J. Drug Discov. Dev., 2001, vol. 1, pp. 75–84.

    Article  Google Scholar 

  25. Semenov, M.V., Chernov, T.I., Tkhakakhova, A.K., Zhelezova, A.D., Ivanova, E.A., Kolganova, T.V., and Kutovaya, O.V., Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century, Appl. Soil Ecol., 2018, vol. 127, pp. 8–18.

    Article  Google Scholar 

  26. Szabo, I.M., Nasser, El-G. A., Striganova, B., Rakhmo, Y.R., Jager, K., and Heydrich, M., Interactions among Millipedes (Diplopoda) and their Intestinal Bacteria, Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck, 1990, vol. S10, pp. 289–296.

  27. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E.M., et al., WHO Pathogens Priority List Working Group, Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis, Lancet Infect. Dis., 2018, vol. 18, pp. 318–327.

    Article  Google Scholar 

  28. Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G.F., Chater, K.F., and van Sinderen, D., Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum, Microbiol. Mol. Biol. Rev., 2007, vol. 71, pp. 495–548.

    Article  CAS  Google Scholar 

  29. Wagman, G.H. and Weinstein, M.J., Antibiotic from Micromonospora, Annu. Rev. Microbiol., 1980, vol. 34, pp. 537–557.

    Article  CAS  Google Scholar 

  30. Wang, R.J., Zhang, S.Y., Ye, Y.H., Yu, Z., Qi, H., Zhang, H., Xue, Z.L., Wang, J.D., and Wu, M., Three new isoflavonoid glycosides from the mangrove-derived actinomycete Micromonospora aurantiaca 110B, Mar. Drugs, 2019, vol. 17, p. 294.

    Article  CAS  Google Scholar 

  31. Wang, W., Park, K.H., Lee, J., Oh, E., Park, C., Kang, E., Lee, J., and Kang, H., A new thiopeptide antibiotic, micrococcin p3, from a marine-derived strain of the bacterium Bacillus stratosphericus, Molecules (Basel), 2020a, vol. 25, p. 4383.

    Article  CAS  Google Scholar 

  32. Wang, T., Lu, Q., Sun, C., Lukianov, D., Osterman, I.A., Sergiev, P.V., Dontsova, O.A., Hu, X., You, X., Liu, S., and Wu, G., Hetiamacin E and F, new amicoumacin antibiotics from Bacillus subtilis PJS using MS/MS-based molecular networking, Molecules, 2020b, vol. 25, p. 4446.

    Article  CAS  Google Scholar 

  33. Wolf, A., Fritze, A., Hagemann, M., and Berg, G., Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 1937–1944.

    CAS  Google Scholar 

  34. Zhang, Y.J., Zhang, W.D., Qin, S., Bian, G.K., Xing, K., Li, Y.F., Cao, C.L., and Jiang, J.H., Saccharopolyspora dendranthemae sp. nov., a halotolerant endophytic actinomycete isolated from a coastal salt marsh plant in Jiangsu, China, Antonie van Leeuwenhoek, 2013, vol. 103, pp. 1369–1376.

    Article  CAS  Google Scholar 

  35. Zucchi, T.D., Bonda, A.N., Frank, S., Kim, B.Y., Kshetrimayum, J.D., and Goodfellow, M., Amycolatopsis bartoniae sp. nov. and Amycolatopsis bullii sp. nov., mesophilic actinomycetes isolated from arid Australian soils, Antonie van Leeuwenhoek, 2012, vol. 102, pp. 91–98.

    Article  CAS  Google Scholar 

  36. Zvyagintsev, D.G., Polyanskaya, L.M., Zenova, G.M., and Babkina, N.I., Dynamics of the length of actinomycete mycelium and prokaryotic cell number in the invertebrate intestinal tract, Microbiology (Moscow), 1996, vol. 65, pp. 238‒245.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.I. Semenyuk for collecting the millipedes.

Funding

The work of A.V. Yakushev on isolation of mycelial actinobacteria was conducted according to State Assignment no. 121040800174-6 “Soil Microbiomes: Genomic Diversity, Functional Activity, Geography, and Biotechnological Potential” and isolation of unicellular bacteria was financially supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2021-1396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Efimenko.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interests.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimenko, T.A., Yakushev, A.V., Karabanova, A.A. et al. Antimicrobial Activity of Bacteria Isolated from the Millipedes Nedyopus dawydoffiae and Orthomorpha sp.. Microbiology 91, 770–782 (2022). https://doi.org/10.1134/S0026261722700023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722700023

Keywords:

Navigation