Skip to main content
Log in

In Vitro Assessment of Probiotic Potential of an Autochthonous Bacterial Isolate, Pseudomonas mosselii COFCAU_PMP5

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Microbiota of the fish gut contains many beneficial bacteria that can be used as probiotics in aquaculture. In this study, several in vitro assays along with an in vivo safety assessment were performed to decipher the probiotic potential of an autochthonous bacterial strain Pseudomonas mosselii COFCAU_PMP5, isolated from the gut of Labeo rohita. The isolate was antagonistic to 14 pathogenic bacteria, survived a wide range of pH (2–9) and tolerated high bile concentration (up to 10%). The strain COFCAU_PMP5 showed significant in vitro mucosal adherence, auto-aggregation capacity, and cell surface hydrophobicity. As a measure of safety prerequisites, the strain was found, besides being non-pathogenic to L. rohita, to be non-hemolytic and sensitive to several antibiotics. Moreover, the strain could produce extracellular enzymes and showed significant free radical scavenging activity, indicating additional beneficial properties. The probiotic potential of the strain Pseudomonas entomophila COFCAU_PEP4, isolated from an autochthonous source, was established by in vitro and safety assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Agaras, B.C., Scandiani, M., Luque, A., FernaÂndez, L., Farina, F., Carmona, M., Gally, M., Romero, A., Wall, L., and Valverde, C., Quantification of the potential biocontrol and direct plant growth promotion abilities based on multiple biological traits distinguish different groups of Pseudomonas spp. isolates, Biol. Control, 2015, vol. 90, pp. 173–186. https://doi.org/10.1016/j.biocontrol.2015.07.003

    Article  Google Scholar 

  2. Balakrishna, A. and Kumar, N.A., Preliminary studies on siderophore production and probiotic effect of bacteria associated with the guppy, Poecilia reticulata (Peters, 1859), Asian Fish Sci., 2012, vol. 25, pp. 193–205. https://doi.org/10.33997/j.afs.2012.25.2.008

    Article  Google Scholar 

  3. Balcázar, J.L., Vendrell, D., De Blas, I., Ruiz-Zarzuela, I., Muzquiz, J.L., and Girones, O., Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish, Aquaculture, 2008, vol. 278, pp. 188–191. https://doi.org/10.1016/j.aquaculture.2008.03.014

    Article  CAS  Google Scholar 

  4. Banerjee, G. and Ray, A.K., Bacterial symbiosis in the fish gut and its role in health and metabolism, Symbiosis, 2018, vol. 72, pp. 1–11. https://doi.org/10.1007/s13199-016-0441-8

    Article  CAS  Google Scholar 

  5. Banerjee, S. and Ghosh, K., Enumeration of gut associated extracellular enzyme-producing yeasts in some freshwater fishes, J. App. Ichthyol., 2014, vol. 30, pp. 986–993. https://doi.org/10.1111/jai.12457

    Article  CAS  Google Scholar 

  6. Brand-Williams, W. Cuvelier, M.E., and Berset, C., Use of a free radical method to evaluate antioxidant activity, Lebenson. Wiss. Technol., 1995, vol. 28, pp. 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  7. De Smet, I., Hoorde, L.V., Woestyne, M.V., Christia-ens, H., and Verstraete, W., Significance of bile salt hydrolytic activities of lactobacilli, J. Appl. Bacteriol., 1995, vol. 79, pp. 292–301. https://doi.org/10.1111/j.1365-2672.1995.tb03140.x

    Article  CAS  PubMed  Google Scholar 

  8. Del Re, B., Sgorbati, B., Miglioli, M., and Palenzona, D., Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum, Lett. Appl. Microbiol., 2000, vol. 31, pp. 438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x

    Article  CAS  PubMed  Google Scholar 

  9. Emam, A.M. and Dunlap, C.A., Genomic and phenotypic characterization of Bacillus velezensis AMB-y1; a potential probiotic to control pathogens in aquaculture. Antonie van Leeuwenhoek, 2020, vol. 113, pp. 2041–2052. https://doi.org/10.1007/s10482-020-01476-5

    Article  CAS  PubMed  Google Scholar 

  10. European Food Safety Authority, Technical specifications for the analysis and reporting of data on antimicrobial resistance (AMR) in the European Union Summary Report, EFSA J., 2012, vol. 10, p. 2587.

    Article  Google Scholar 

  11. FAO/WHO, Report on Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, October 1−4, Cordoba, Argentina, 2001.

  12. Gram, L.O.N.E., Inhibitory effect against pathogenic and spoilage bacteria of Pseudomonas strains isolated from spoiled and fresh fish, Appl. Environ. Microbiol., 1993, vol. 59, pp. 2197–2203. https://doi.org/10.1128/AEM.59.7.2197-2203.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han, Q., Kong, B., Chen, Q., Sun, F., and Zhang, H., In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics, J. Funct. Foods, 2017, vol. 32, pp. 391–400. https://doi.org/10.1016/j.jff.2017.03.020

    Article  CAS  Google Scholar 

  14. James, G., Das, B.C., Jose, S. and Kumar, V.J.R., Bacillus as an aquaculture friendly microbe, Aquacult. Int., 2021, vol. 29, pp. 323–353. https://doi.org/10.1007/s10499-020-00630-0

    Article  CAS  Google Scholar 

  15. Joseph, S.W., Colwell, R.R., and Kaper, J.B., Vibrio parahaemolyticus and related hallophilic vibrios, Crit. Rev. Microbiol., 1982, vol. 10, pp. 73–124. https://doi.org/10.3109/10408418209113506

  16. Kavitha, M., Raja, M., and Perumal, P., Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822), Aquacult. Rep., 2018, vol. 11, pp. 59–69. https://doi.org/10.1016/j.aqrep.2018.07.001

    Article  Google Scholar 

  17. Khan, M.I.R., Choudhury, T.G., Kamilya, D., Monsang, S.J., and Parhi, J., Characterization of Bacillus spp. isolated from intestine of Labeo rohita—towards identifying novel probiotics for aquaculture, Aquacult. Res., 2021, vol. 52, pp. 822–830. https://doi.org/10.1111/are.14937

    Article  CAS  Google Scholar 

  18. Lee, S., Lee, J., Jin, Y.I., Jeong, J.C., Chang, Y.H., Lee,Y., Jeong, Y., and Kim, M., Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce, LWTFood Sci. Technol., 2017, vol. 79, pp. 518–524. https://doi.org/10.1016/j.lwt.2016.08.040

    Article  CAS  Google Scholar 

  19. Lemos, M.L., Toranzo, A.E., and Barja, J.L., Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds, Microb. Ecol., 1985, vol. 11, pp. 149–163. https://doi.org/10.1007/BF02010487

    Article  CAS  PubMed  Google Scholar 

  20. Midhun, S.J., Neethu, S., Vysakh, A., Sunil, M.A., Radhakrishnan, E.K., and Jyothis, M., Antibacterial activity of autochthonous bacteria isolated from Anabas testudineus (Bloch, 1792) and it’s in vitro probiotic characterization, Microb. Pathog., 2017, vol. 113, pp. 312–320. https://doi.org/10.1016/j.micpath.2017.10.058

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura, A., Takahashi, K.G., and Mori, K., Vibriostatic bacteria isolated from rearing seawater of oyster brood stock: potentiality as biocontrol agents for vibriosis in oyster larvae, Fish Pathol., 1999, vol. 34, pp. 139–144. https://doi.org/10.3147/jsfp.34.139

    Article  Google Scholar 

  22. Nikoskelainen, S., Salminen, S., Bylund, G., and Ouwehand, A.C., Characterization of the properties of human-and dairy-derived probiotics for prevention of infectious diseases in fish, Appl. Environ. Microbiol., 2001, vol. 67, pp. 2430–2435. https://doi.org/10.1128/AEM.67.6.2430-2435.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Novik, G., Savich, V., and Kiseleva, E., An insight into beneficial Pseudomonas bacteria, Microbiology in Agriculture and Human Health, 2015, vol. 1, pp. 73–105. https://doi.org/10.5772/60502

    Article  CAS  Google Scholar 

  24. Padmavathi, T., Bhargavi, R., Priyanka, P.R., Nira-njan, N.R., and Pavitra, P.V., Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification, J. Genet. Eng. Biotechnol., 2018, vol. 16, pp. 357–362. https://doi.org/10.1016/j.jgeb.2018.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ringo, E., Strom, E., and Tabachek, J.A., Intestinal micro flora of salmonids: a review, Aquacult. Res., 1995, vol. 26, pp. 773–789. https://doi.org/10.1111/j.1365-2109.1995.tb00870.x

    Article  Google Scholar 

  26. Ruch, R.J., Cheng, S.J., and Klaunig, J.E., Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea, Carcinogenesis, 1989, vol. 10, pp. 1003–1008. https://doi.org/10.1093/carcin/10.6.1003

    Article  CAS  PubMed  Google Scholar 

  27. Spelhaug, S.R. and Harlander, S., Inhibition of food-borne bacterial pathogens by bacteriocins from Lactococcus lactis, Pediococcus pentosaceus, J. Food. Prot., 1989, vol. 52, pp. 856—862. https://doi.org/10.4315/0362-028X-52.12.856

  28. Stephens, W.Z., Burns, A.R., Stagaman, K., Wong, S., Rawls, J.F., Guillemin, K., and Bohannan, B.J., The composition of the zebrafish intestinal microbial community varies across development, The ISME J., 2016, vol. 10, pp. 644–654. https://doi.org/10.1038/ismej.2015.140

    Article  CAS  PubMed  Google Scholar 

  29. Tuomola, E., Crittenden, R., Playne, M., Isolauri, E., and Salminen, S., Quality assurance criteria for probiotic bacteria, Am. J. Clin. Nutr., 2001, vol. 73, pp. 393s–398s. https://doi.org/10.1093/ajcn/73.2.393s

    Article  CAS  PubMed  Google Scholar 

  30. Van Doan, H., Hoseinifar, S.H., Ringø, E., Ángeles Esteban, M., Dadar, M., Dawood, M.A., and Faggio, C., Host-associated probiotics: a key factor in sustainable aquaculture, Rev. Fish. Sci. Aquacult., 2020, vol. 28, pp. 16–42. https://doi.org/10.1080/23308249.2019.1643288

    Article  Google Scholar 

  31. Verschuere, L., Rombaut, G., Sorgeloos, P., and Verstraete, W., Probiotic bacteria as biological control agents in aquaculture, Microbiol. Mol. Biol. Rev., 2000, vol. 64, pp. 655–671. https://doi.org/10.1128/MMBR.64.4.655-671.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vine, N.G., Leukes, W.D., and Kaiser, H., Probiotics in marine larviculture, FEMS Microbiol. Rev., 2006, vol. 30, pp. 404–427. https://doi.org/10.13031/aim.202100522

    Article  CAS  PubMed  Google Scholar 

  33. Wanka, K.M., Damerau, T., Costas, B., Krueger, A., Schulz, C., and Wuertz, S., Isolation and characterization of native probiotics for fish farming, BMC Microbiol., 2018, vol. 18, pp. 1–13. https://doi.org/10.1186/s12866-018-1260-2

    Article  CAS  Google Scholar 

  34. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, vol. 173, pp. 697−703. https://doi.org/10.1128/JB.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xing, J., Wang, G., Zhang, Q., Liu, X., Gu, Z., Zhang, H., Chen, Y.Q., and Chen, W., Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods, PLoS One, 2015, vol.10, p. e0119058. https://doi.org/10.1371/journal.pone.0119058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamashita, M.M., Ferrarezi, J.V., Do Vale Pereira, G., Júnior, G.B., Da Silva, B.C., Pereira, S.A., Martins, M.L., and Mouriño, J.L.P., Autochthonous vs allochthonous probiotic strains to Rhamdia quelen, Microb. Pathog., 2020, vol. 139, p. 103897. https://doi.org/10.1016/j.micpath.2019.103897

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by a research grant from Department of Biotechnology, New Delhi, India [BT/PR25008/NER/95/953/2017].

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally.

Corresponding authors

Correspondence to T. G. Choudhury or D. Kamilya.

Ethics declarations

The authors declare that they have no conflicts of interest.

All experimental procedures involving fish were performed in accordance with the guidelines suggested by the ethical committee of the institute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, A.A., Khan, M.I., Choudhury, T.G. et al. In Vitro Assessment of Probiotic Potential of an Autochthonous Bacterial Isolate, Pseudomonas mosselii COFCAU_PMP5. Microbiology 91, 207–214 (2022). https://doi.org/10.1134/S0026261722020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722020047

Keywords:

Navigation