Skip to main content
Log in

Microbial Community Composition of Floodplains Shallow-Water Seeps in the Bolshaya Rechka Floodplain, Western Siberia

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Recently discovered fields of seeps in western Siberia are an important, previously unknown source of methane. Seeps are located in the floodplains of small rivers and vary in shape, size and localization. Methane fluxes from seeps may be high, making them the sources of high regional importance. However, the data on the seep bacterial community composition are scarce, concentrating mainly on methanotrophic bacteria. In the present work, the overall bacterial diversity in the sediments of shallow-water seeps at the floodplain of the Bolshaya Rechka River was studied using high-throughput 16S rRNA gene sequencing. Molecular analysis revealed that Gammaproteobacteria and Actinobacteria were the most abundant bacterial groups (28.5–33.8 and 11–13.2% of total 16S rRNA genes, respectively). A significant part of the sequences belonged to Chloroflexi, Desulfobacterota, and Bacteroidota. Acidobacteriota and Verrucomicrobiota were responsible for 1.5–2.7 and 1.0–1.9%, respectively. The methanotrophic community was dominated by bacteria of the genus Methylobacter. The most numerous species-level OTU (8% of all 16S rRNA gene sequences) belonged to Methylobacter tundripaludum (97% identity). Methanotrophic Alphaproteobacteria were not detected in the seeps. Our results confirm the presence of an active bacterial community in the sediments of shallow-water seeps, with predominance of methanotrophic Gammaproteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Belova, S.E., Oshkin, I.Y., Dedysh, S.N., Glagolev, M.V., Lapshina, E.D., and Maksyutov, S.S., Methanotrophic bacteria in cold seeps of the floodplains of northern rivers, Microbiology (Moscow), 2013, vol. 82, pp. 743–750.

    Article  CAS  Google Scholar 

  2. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 2019, vol. 37, pp. 852–857.

    Article  CAS  Google Scholar 

  3. Bourne, D.G., McDonald, I.R., and Murrell, J.C., Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils, Appl. Environ. Microbiol., 2001, vol. 67, pp. 3802–3809.

    Article  CAS  Google Scholar 

  4. Bousquet, P., Ciais, P., Miller, J.B., Dlugokencky, E.J., Hauglustaine, D.A., Prigent, C., van der Werf, G.R., Peylin, P., Brunke, E.-G., Carouge, C., Langenfelds, R.L., Lathière, J., Papa, F., Ramonet, M., Schmidt, M., et al., Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 2006, vol. 443, pp. 439–443.

    Article  CAS  Google Scholar 

  5. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P., DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 2016, vol. 13, pp. 581–583.

    Article  CAS  Google Scholar 

  6. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M. Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., and Thornton, P., Carbon and other biogeochemical cycles, in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of IPCC, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M., Eds., Cambridge: Cambridge Univ. Press, 2013, pp. 465–570.

  7. da Rocha, U.N., Plugge, C.M., George, I., van Elsas, J.D., and van Overbeek, L.S., The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia, PLoS One, 2013, vol. 8, art. e82443.

    Article  Google Scholar 

  8. Fadrosh, D., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R., and Ravel, J., An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform, Microbiome, 2014, vol. 2, p. 6.

    Article  Google Scholar 

  9. Fletcher, S.E.M. and Schaefer, H., Rising methane: a new climate challenge, Science, 2019, vol. 364, pp. 932–933.

    Article  CAS  Google Scholar 

  10. Holmes, A.J., Costello, A., Lidstrom, M.E., and Murrell, J.C., Evidence that particulate methane monooxygenase and ammonium monooxygenase may be evolutionarily related, FEMS Microbiol. Lett., 1995, vol. 132, pp. 203–208.

    Article  CAS  Google Scholar 

  11. Hope, D., Dawson, J.J., Cresser, M.S., and Billett, M.F., A method for measuring free CO2 in upland streamwater using headspace analysis, J. Hydrol., 1995, vol. 166, pp. 1–14.

    Article  Google Scholar 

  12. Huber, K.J., Geppert, A.M., Wanner, G., Fösel, B.U., Wüst, P.K., and Overmann, J., The first representative of the globally widespread subdivision 6 Acidobacteria, Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 2971–2979.

    Article  CAS  Google Scholar 

  13. Hugerth, L.W., Wefer, H.A., Lundin, S., Jakobsson, H.E., Lindberg, M., Rodin, S. Engstrand, L., and Andersson, A.F., DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies, Appl. Environ. Microbiol., 2017, vol. 80, pp. 5116–5123.

    Article  Google Scholar 

  14. Janssen, P.H., Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes, Appl. Environ. Microbiol., 2006, vol. 72, pp. 1719–1728.

    Article  CAS  Google Scholar 

  15. Kalyuzhnaya, M.G., Lapidus, A., Ivanova, N., Copeland, A.C., McHardy, A.C., Szeto, E., Salamov, A., Grigoriev, I.V., Suciu, D., Levine, S.R., Markowitz, V.M., Rigoutsos, I., Tringe, S.G., Bruce, D.C., Richardson, P.M., et al., High-resolution metagenomics targets specific functional types in complex microbial communities, Nat. Biotechnol., 2008, vol. 26, pp. 1029–1034.

    Article  CAS  Google Scholar 

  16. Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A., and Kuramae, E.E., The ecology of Acidobacteria: moving beyond genes and genomes, Front. Microbiol., 2016, vol. 7, art. 744.

    PubMed  PubMed Central  Google Scholar 

  17. Kim, M., Pak, S., Rim, S., Ren, L., Jiang, F., Chang, X., Liu, P., Zhang, Y., Fang, C., Zheng, C., and Peng, F., Luteolibacter arcticus sp. nov., isolated from high Arctic tundra soil, and emended description of the genus Luteolibacter, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 1922–1928.

    Article  CAS  Google Scholar 

  18. Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., Sindelka, R., Sjöback, R., Sjögreen, B., Strömbom, L., Ståhlbergag, A., and Zorica, N., The real-time polymerase chain reaction, Mol. Aspects Med., 2006, vol. 2, pp. 95–125.

    Article  Google Scholar 

  19. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547–1549.

    Article  CAS  Google Scholar 

  20. Liao, L., Xu, X.W., Jiang, X.W., Wang, C.S., Zhang, D.S., Ni, J-Y., and Wu, M., Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean, FEMS Microbiol. Ecol., 2011, vol. 78, pp. 565–585.

    Article  CAS  Google Scholar 

  21. Lin, J.Y., Russell, J.A., Sanders, J.G., and Wertz, J.T., Cephaloticoccus gen. nov., a new genus of “Verrucomicrobia” containing two novel species isolated from Cephalotes ant guts, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 3034–3040.

    Article  CAS  Google Scholar 

  22. Merkel, A.Y., Podosokorskaya, O.A., Toshchakov, S.V., and Tarnovetskii, I.Y., Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities, Microbiology (Moscow), 2019, vol. 88, pp. 671–680.

    Article  CAS  Google Scholar 

  23. Navarrete, A.A., Kuramae, E.E., de Hollander, M., Pijl, A.S., van Veen, J.A., and Tsai, S.M., Acidobacterial community responses to agricultural management of soybean in Amazon forest soils, FEMS Microbiol. Ecol., 2013, vol. 83, pp. 607–621.

    Article  CAS  Google Scholar 

  24. Onley, J.R., Ahsan, S., Sanford, R.A., and Löffler, F.E., Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK, Appl. Environ Microbiol., 2017, vol. 84, art. e01985-17.

    Google Scholar 

  25. Oshkin, I.Y., Belova, S.E., Danilova, O.V., Miroshnikov, K.K., Rijpstra, W.I.C., Sinninghe Damste, J.S., Liesack, W., and Dedysh, S.N., Methylovulum psychrotolerans sp. nov., a cold-adapted methanotroph from low-temperature terrestrial environments, and emended description of the genus Methylovulum, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 2417–2423.

    Article  CAS  Google Scholar 

  26. Oshkin, I.Y., Wegner, C.E., Lüke, C., Glagolev, M.V., Filippov, I.V., Pimenov, N.V., Liesack, W., and Dedysh, S.N., Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers, Appl. Environ. Microbiol., 2014, vol. 80, pp. 5944–5954.

    Article  Google Scholar 

  27. Oswald, K., Graf, J., Littmann, S., Tienken, D., Brand, A., Wehrli, B., Albertsen, M., Daims, H., Wagner, M., Kuypers, M., Schubert, C.J., and Milucka, J., Crenothrix are major methane consumers in stratified lakes, ISME J., 2017, vol. 11, pp. 2124–2140.

    Article  CAS  Google Scholar 

  28. Pascual, J., Garcia-Lopez, M., Gonzalez, I., and Genilloud, O., Luteolibacter gellanilyticus sp. nov., a gellan-gum-degrading bacterium of the phylum Verrucomicrobia isolated from miniaturized diffusion chambers, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 3951–3959.

    Article  CAS  Google Scholar 

  29. Pascual, J., Wüst, P.K., Geppert, A., Foesel, B.U., Huber, K.J., and Overmann, J., Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria Subdivision 4, Syst. Appl. Microbiol., 2015, vol. 38, pp. 534–544.

    Article  CAS  Google Scholar 

  30. Qiu, Y.L., Kuang, X.Z., Shi, X.S., Yuan, X.Z., and Guo, R.B., Terrimicrobium sacchariphilum gen. nov., sp. nov., an anaerobic bacterium of the class “Spartobacteria” in the phylum Verrucomicrobia, isolated from a rice paddy field, Int. J. Syst. Evol Microbiol., 2014, vol. 64, pp. 1718–1723.

    Article  CAS  Google Scholar 

  31. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools, Nucl. Acids Res., 2013, vol. 41, pp. 590–596.

    Article  Google Scholar 

  32. Ratcliffe, J.L., Creevy, A., Andersen, R., Zarov, E., Gaffney, P.P., Taggart, M.A., Mazeie, Y., Tsyganov, A.N., Rowson, J.G., Lapshina, E.D., and Payne, R.J., Ecological and environmental transition across the forested-to-open bog ecotone in a west Siberian peatland, Sci. Total Environ., 2017, vol. 607, pp. 816–828.

    Article  Google Scholar 

  33. Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F., VSEARCH: a versatile open source tool for metagenomics, PeerJ., 2016, vol. 4, art. e2584.

    Article  Google Scholar 

  34. Sabrekov, A.F., Terentieva, I.E., Glagolev, M.V., Litti, Y.V., and Maksyutov, S.S., Methane seeps in West Siberian middle taiga river floodplains: origin and fluxes, AGU Fall Meeting, 2020.

  35. Sanford, R.A., Wagner, D.D., Wu, Q., Chee-Sanford, J.C., Thomas, S.H., Cruz-García, C., Rodríguez, G., Massol-Deyá, A., Krishnani, K.K., Ritalahti, K.M., Nissen, S., Konstantinidis, K.T., and Löffler, F.E. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 19709–19714.

    Article  CAS  Google Scholar 

  36. Terentieva, I.E., Glagolev, M.V., Lapshina, E.D., Sabrekov, A.F., and Maksyutov, S., Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions, Biogeosci., 2016, vol. 13, pp. 4615–4626.

    Article  CAS  Google Scholar 

  37. Vieira, S., Luckner, M., Wanner, G., and Overmann, J., Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1408–1414.

    Article  CAS  Google Scholar 

  38. Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., and Glöckner, F.O., The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks, Nucl. Acids Res., 2014, vol. 42, pp. 643–648.

    Article  Google Scholar 

  39. Yoon, J., Matsuo, Y., Adachi, K., Nozawa, M., Matsuda, S., Kasai, H., and Yokota, A., Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum “Verrucomicrobia”, and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 998–1007.                                               

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 19-77-10074. The logistics of the work was organized with the support of a grant from the Government of the Tyumen region in accordance with the program of the West Siberian Interregional Scientific and Educational Center of the world level within the framework of the national project “Science.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Danilova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilova, O.V., Ivanova, A.A., Terent’eva, I.E. et al. Microbial Community Composition of Floodplains Shallow-Water Seeps in the Bolshaya Rechka Floodplain, Western Siberia. Microbiology 90, 632–642 (2021). https://doi.org/10.1134/S0026261721050040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721050040

Keywords:

Navigation