Skip to main content
Log in

Elemental Composition of Dormant and Germinating Fungal Spores

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

For dormant (spores 0) and germinating fungal spores (spores G), elemental composition and the К/Са and P/S ratios were determined. According to the working hypothesis, the latter reflected the specifics of the spore physiological state. Mycelial fungi with different rates of spore transition from the exogenous dormant state in the absence of nutrients in reactivation media were studied. Carbon content in spores 0 correlated with the level of cellular lipids. The K/Ca ration in spores 0 was lower for Aspergillus tamarii and Cunninghamella echinulata than for Aspergillus sydowii and Umbelopsis ramanniana. The P/S ratio in Aspergillus dormant spores was lower than in zygomycete fungi, while in rapidly germinating spores of A. tamarii and C. echinulata this ratio was 1.5‒1.75 times lower than in slowly germinating spores of A. sydowii and U. ramanniana strains. Thus, low К/Са and P/S ratios in dormant fungal spores may be used to predict their more rapid transition from the dormant state, which is important in the case of mycelial fungi producing compounds used in biotechnology, as well as for the clinically significant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Dinamarco, T.M., Freitas, F.Z., Almeida, R.S., Brown, N.A., dos Reis, T.F., Ramalho, L.N.Z., Savoldi, M., Goldman, M.H.S., Bertolini, M.C., and Goldman, G.H., Functional characterization of an Aspergillus fumigatus calcium transporter (PmcA) that is essential for fungal infection, PLoS One, 2012, vol. 7, no. 5. e37591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feofilova, E.P., Deceleration of vital activity as a universal biochemical mechanism ensuring adaptation of microorganisms to stress factors: a review, Appl. Biochem. Microbiol., 2003, vol. 39, pp. 1‒18.

    Article  CAS  Google Scholar 

  3. Folch, G., Lees, M., and Sloane-Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    CAS  PubMed  Google Scholar 

  4. Friedman, R., Membrane–ion interactions, J. Membrane Biol., 2018, vol. 251, pp. 453–460.

    Article  CAS  Google Scholar 

  5. Grigoriev, I.V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R., Salamov, A., Zhao, X., Kor-zeniewski, F., Smirnova, T., Nordberg, H., Dubchak, I., and Shabalov, I., MycoCosm portal: gearing up for 1000 fungal genomes, Nucleic Acids Res., 2014, vol. 42. Database issue. D699‒D704.

  6. Hodgkin, A.L. and Horowicz, P., The influence of potassium and chloride ions on the membrane potential of single muscle fibres, J. Physiol. (London), 1959, vol. 148, pp. 127–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lardizabal, K., Effertz, R., Levering, C., Mai, J., Pedroso, M.C., Jury, T., Aasen, E., Gruys, K., and Bennett, K., Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean, Plant Physiol., 2008, vol. 148, pp. 89‒96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lennon, J.T. and Jones, S.E., Microbial seed banks: the ecological and evolutionary implications of dormancy, Nature Rev. Microbiol., 2011, vol. 9, pp. 119‒130.

    Article  CAS  Google Scholar 

  9. Mulyukin, A.L., Sorokin, V.V., Loiko, N.G., Suzina, N.E., Duda, V.I., Vorob’eva, E.A., and El’-Registan, G.I., Comparative study of the elemental composition of vegetative and dormant microbial cells, Microbiology (Moscow), 2002, vol. 71, pp. 31‒40.

    Article  CAS  Google Scholar 

  10. Mysyakina, I.S., Sergeeva, Ya.E., Sorokin, V.V., Ivashechkin, A.A., Kostrikina, N.A., and Feofilova, E.P., Lipid and elemental composition as indicators of the physiological state of sporangiospores in Mucor hiemalis cultures of different ages, Microbiology (Moscow), 2014, vol. 83, pp. 110‒118.

    Article  CAS  Google Scholar 

  11. Mysyakina, I.S., Kochkina, G.A., Ivanushkina, N.E., Bokareva, D.A., and Feofilova, E.P., Germination of spores of mycelia fungi in relation to exogenous dormancy, Microbiology (Moscow), 2016a, vol. 85, pp. 290‒294.

    Article  CAS  Google Scholar 

  12. Mysyakina, I.S., Usov, A.I., Bokareva, D.A., and Feofilova, E.P., Trehalose content in dormant and germinating spores of mycelial fungi, Izv. Ufim. Nauch. Tsentr. RAN, 2016b, no. 3 (1), pp. 143‒145.

  13. Mysyakina, I.S., Sergeeva, Ya.E., and Bokareva, D.A., Lipid composition of the spores of zygomycetous and ascomycetous fungi during cessation of the exogenous dormancy state, Microbiology (Moscow), 2018, vol. 87, pp. 51‒59.

    Article  CAS  Google Scholar 

  14. Nagata, T., X-ray microanalysis of biological specimens by high voltage electron microscopy, Prog. Histochem. Cytochem., 2004, vol. 39, pp. 185‒319.

    Article  CAS  PubMed  Google Scholar 

  15. Osherov, N. and May, G.S., The molecular mechanisms of conidial germination, FEMS Microbiol. Lett., 2001, vol.  99, pp. 153‒160.

    Article  Google Scholar 

  16. Pitryuk, A.V., Pusheva, M.A., and Sorokin, V.V., Elemental composition of extremely alkaliphilic anaerobic bacteria, Microbiology (Moscow), 2002, vol. 71, pp. 30‒36.

    Article  Google Scholar 

  17. Pittman J.K. Vacuolar Ca2+ uptake, Cell Calcium, 2011, vol. 50, pp. 139‒146.

    Article  CAS  PubMed  Google Scholar 

  18. Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin, Biochemistry, 1979, vol. 18, pp. 780–790.

    Article  CAS  PubMed  Google Scholar 

  19. Prithviraj, B., Mandal, K., and Singh, U.P., Calcium and calmodulin modulate fungal spore germination, Indian Phytopathol., 1998, vol. 51, pp. 319‒323.

    Google Scholar 

  20. Song, J., Franck, J., Pincus, P., Kim, M.W., and Han, S., Specific ions modulate diffusion dynamics of hydration water on lipid membrane surfaces, J. Am. Chem. Soc., 2014, vol. 136, pp. 2642–2649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stewart, M., Somlyo, A.P., Somlyo, A.V., Shuman, H., Lindsay, J.A., and Murrell, W.G., Distribution of calcium and other elements in cryosectioned Bacillus cereus T spores, determined by high-resolution scanning electron probe X-ray microanalysis, J. Bacteriol., 1980, vol. 143, pp. 481–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Träuble, H. and Eibl, H., Electrostatic effects on lipid phase transitions: membrane structure and ionic environment, Proc. Natl. Acad. Sci. U. S. A., 1974, vol. 71, pp. 214–219.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Warwar, V. and Dickman, M.B., Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii, Appl. Environ. Microbiol., 1996, vol. 62, pp. 74‒79.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilschut, J., Duzgunes, N., Fraley, R., and Papahadjopoulos, D., Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents, Biochemistry, 1980, vol. 19, pp. 6011–6021.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Elemental composition was determined using the equipment of the UNIQEM Collection Core Facility, Research Center of Biotechnology, Russian Academy of Sciences.

Funding

The work was carried out within the framework of a State Assignment of the Russian Ministry of Science and Higher Education and partially supported by the Russian Foundation for Basic Research, project no. 15-04-03484.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Mysyakina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the au-thors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mysyakina, I.S., Sorokin, V.V., Dorofeeva, I.K. et al. Elemental Composition of Dormant and Germinating Fungal Spores. Microbiology 88, 444–450 (2019). https://doi.org/10.1134/S002626171904009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171904009X

Keywords:

Navigation