Skip to main content
Log in

Complete Genome Sequence of an Uncultured Bacterium of the Candidate Phylum Bipolaricaulota

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Bacteria of the candidate phylum Bipolaricaulota, previously known as OP1 and Acetothermia, have been identified in various terrestrial and marine ecosystems as a result of molecular analysis of microbial communities. To date, none of the members of Bipolaricaulota has been isolated in a pure culture. We assembled the complete closed genome sequence of the bacterium of this phylum from the metagenome of a subsurface thermal aquifer and used the genomic data to analyze the phylogenetic position and metabolic potential of this bacterium. Analysis of the genome of this bacterium, designated Ch78, revealed various transporters of sugars and peptides and limited capacities for the extracellular hydrolysis of polysaccharides. Reconstruction of the central metabolic pathways suggested that the bacterium Ch78 is an anaerobic organotroph capable of fermenting sugars and proteinaceous substrates. Known pathways of aerobic and anaerobic respiration, as well as of autotrophic carbon fixation, were not found in the Ch78 genome. In the subsurface aquifer Bipolaricaulota probably consume low-molecular weight organic compounds and produce hydrogen and acetate. Based on the results of phylogenetic and genomic analysis, classification of the novel bacterium as “Candidatus Bipolaricaulis sibiricus” is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alneberg, J., Bjarnason, B.S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U.Z., Lahti, L., Loman, N.J., Andersson, A.F., and Quince, C., Binning metagenomic contigs by coverage and composition, Nat. Methods, 2014, vol. 11, pp. 1144‒1146.

    Article  CAS  PubMed  Google Scholar 

  2. Anantharaman, K., Brown, C.T., Hug, L.A., Sharon, I., Castelle, C.J., Probst, A.J., Thomas, B.C., Singh, A., Wilkins, M.J., Karaoz, U., Brodie, E.L., Williams, K.H., Hubbard, S.S., and Banfield, J.F., Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system, Nat. Commun., 2016, vol. 7, p. 13219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown, C.T., Olm, M.R., Thomas, B.C., and Banfield, J.F., Measurement of bacterial replication rates in microbial communities, Nat. Biotechnol., 2016, vol. 34, pp. 1256‒1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao, M.D., Nguyen, S.H., Ganesamoorthy, D., Elliott, A.G., Cooper, M.A., and Coin, L.J., Scaffolding and completing genome assemblies in real-time with nanopore sequencing, Nat. Commun., 2017, vol. 8, p. 14515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Costa, K.C., Navarro, J.B., Shock, E.L., Zhang, C.L., Soukup, D., and Hedlund, B.P., Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin, Extremophiles, 2009, vol. 13, pp. 447‒459.

    Article  CAS  PubMed  Google Scholar 

  6. Greening, C., Biswas, A., Carere, C.R., Jackson, C.J., Taylor, M.C., Stott, M.B., Cook, G.M., and Morales, S.E., Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival, ISME J., 2016, vol. 10, pp. 761‒777.

    Article  CAS  PubMed  Google Scholar 

  7. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 2010, vol. 59, pp. 307‒321.

    Article  CAS  PubMed  Google Scholar 

  8. Hao, L., McIlroy, S.J., Kirkegaard, R.H., Karst, S.M., Fernando, W.E.Y., Aslan, H., Meyer, R.L., Albertsen, M., Nielsen, P.H., and Dueholm, M.S., Novel prosthecate bacteria from the candidate phylum Acetothermia, ISME J., 2018, vol. 12, pp. 2225‒2237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hernsdorf, A.W., Amano, Y., Miyakawa, K., Ise, K., Suzuki, Y., Anantharaman, K., Probst, A., Burstein, D., Thomas, B.C., and Banfield, J.F., Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments, ISME J., 2017, vol. 11, pp. 1915‒1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hirayama, H., Takai, K., Inagaki, F., Yamato, Y., Suzuki, M., Nealson, K.H., and Horikoshi, K., Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine, Extremophiles, 2005, vol. 9, pp. 169‒184.

    Article  CAS  PubMed  Google Scholar 

  11. Hu, P., Tom, L., Singh, A., Thomas, B.C., Baker, B.J., Piceno, Y.M., Andersen, G.L., and Banfield, J.F., Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs, MBio, 2016, vol. 7, p. e01669-15.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hugenholtz, P., Pitulle, C., Hershberger, K.L., and Pace, N.R., Novel division level bacterial diversity in a Yellowstone hot spring, J. Bacteriol., 1998, vol. 180, pp. 366‒376.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kadnikov, V.V., Frank, Y.A., Mardanov, A.V., Beletskii, A.V., Ivasenko, D.A., Pimenov, N.V., Karnachuk, O.V., and Ravin, N.V., Uncultured bacteria and methanogenic archaea predominate in the microbial community of Western Siberian deep subsurface aquifer, Microbiology (Moscow), 2017a, vol. 86, pp. 412‒415.

    Article  CAS  Google Scholar 

  14. Kadnikov, V.V., Frank, Y.A., Mardanov, A.V., Beletsky, A.V., Ivasenko, D.A., Pimenov, N.V., Karnachuk, O.V., and Ravin, N.V., Variability of the composition of the microbial community of the deep subsurface thermal aquifer in Western Siberia, Microbiology (Moscow), 2017b, vol. 86, pp. 765‒772.

    Article  CAS  Google Scholar 

  15. Kadnikov, V.V., Frank, Y.A., Mardanov, A.V., Beletsky, A.V., Karnachuk, O.V., and Ravin, N.V., Metagenome of the Siberian underground water reservoir, Genome Announc., 2017c, vol. 5, p. e01317-17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kadnikov, V.V., Mardanov, A.V., Beletsky, A.V., Banks, D., Pimenov, N.V., Frank, Y.A., Karnachuk, O.V., and Ravin, N.V., A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition, FEMS Microbiol. Ecol., 2018, vol. 94, p. fiy152.

    Article  CAS  Google Scholar 

  17. Kato, S., Kobayashi, C., Kakegawa, T., and Yamagishi, A., Microbial communities in iron silica rich microbial mats at deep sea hydrothermal fields of the Southern Mariana Trough, Environ. Microbiol., 2009, vol. 11, pp. 2094‒2111.

    Article  CAS  PubMed  Google Scholar 

  18. Konstantinidis, K.T., Rosselló-Móra, R., and Amann, R., Uncultivated microbes in need of their own taxonomy, ISME J., 2017, vol. 11, pp. 2399‒2406.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, pp. 357‒359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 2009, vol. 25, pp. 1754‒1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Magnabosco, C., Ryan, K., Lau, M.C., Kuloyo, O., Lollar, B.S., Kieft, T.L., van Heerden, E., and Onstott, T.C., A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust, ISME J., 2016, vol. 10, pp. 730‒741.

    Article  CAS  PubMed  Google Scholar 

  22. Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.-P., and Göker, M., Genome sequence-based species delimitation with confidence intervals and improved distance functions, BMC Bioinform., 2013, vol. 14, p. 60.

    Article  Google Scholar 

  23. Nobu, M.K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S.G., Woyke, T., and Liu, W.T., Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor, ISME J., 2015, vol. 9, pp. 1710‒1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.A., and Hugenholtz, P., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat. Biotechnol., 2018, vol. 36, pp. 996‒1004.

    Article  CAS  PubMed  Google Scholar 

  25. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res., 2015, vol. 25, pp. 1043‒1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Probst, A.J., Castelle, C.J., Singh, A., Brown, C.T., Anantharaman, K., Sharon, I., Hug, L.A., Burstein, D., Emerson, J.B., Thomas, B.C., and Banfield, J.F., Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations, Environ. Microbiol., 2017, vol. 19, pp. 459‒474.

    Article  CAS  PubMed  Google Scholar 

  27. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res., 2013, vol. 41, pp. D590‒D596.

    Article  CAS  PubMed  Google Scholar 

  28. Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.F., Darling, A., Malfatti, S., Swan, B.K., Gies, E.A., Dodsworth, J.A., Hedlund, B.P., Tsiamis, G., Sievert, S.M., Liu, W.T., Eisen, J.A., et al., Insights into the phylogeny and coding potential of microbial dark matter, Nature, 2013, vol. 499, pp. 431‒437.

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez-R, L.M. and Konstantinidis, K.T., The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes, PeerJ Preprints, 2016, vol. 4, p. e1900v1.

  30. Søndergaard, D., Pedersen, C.N., and Greening, C., HydDB: A web tool for hydrogenase classification and analysis, Sci. Rep., 2016, vol. 6, p. 34212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stott, M.B., Saito, J.A., Crowe, M.A., Dunfield, P.F., Hou, S., Nakasone, E., Daughney, C.J., Smirnova, A.V., Mountain, B.W., Takai, K., and Alam, M., Culture-independent characterization of a novel microbial community at a hydrothermal vent at Brothers volcano, Kermadec arc, New Zealand, J. Geophys. Res., 2008, vol. 113, p. B08S06.

    Article  CAS  Google Scholar 

  32. Takami, H., Noguchi, H., Takaki, Y., Uchiyama, I., Toyoda, A., Nishi, S., Chee, G.J., Arai, W., Nunoura, T., Itoh, T., Hattori, M., and Takai, K., A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem, PLoS One, 2012, vol. 7. e30559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teske, A., Hinrichs, K.U., Edgcomb, V., de Vera Gomez, A., Kysela, D., Sylva, S.P., Sogin, M.L., and Jannasch, H.W., Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities, Appl. Environ. Microbiol., 2002, vol. 68, pp. 1994‒2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tobler, D.J. and Benning, L.G., Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects, Extremophiles, 2011, vol. 15, pp. 473‒485.

    Article  PubMed  Google Scholar 

  35. Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., and Earl, A.M., Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement, PLoS One, 2014, vol. 9, p. e112963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research, project no. 16-34-60124 and by the Ministry of Science and Higher Education of the Russian Federation.

The work was carried out using the scientific equipment of the Core Research Facility “Bioengineering” (Research Center of Biotechnology Russian Academy of Sciences).

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 16-34-60124 and by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kadnikov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadnikov, V.V., Mardanov, A.V., Beletsky, A.V. et al. Complete Genome Sequence of an Uncultured Bacterium of the Candidate Phylum Bipolaricaulota. Microbiology 88, 461–468 (2019). https://doi.org/10.1134/S0026261719040064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719040064

Keywords:

Navigation