Skip to main content
Log in

Effect of O-acetylation of O antigen of Escherichia coli lipopolysaccharide on the nonspecific barrier function of the outer membrane

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Comparison of the methods for determination of permeability of the outer membrane of Escherichia coli strain 4s and its mutants was carried out. The studied isogenic strains E. coli 4s were obtained by selection of spontaneous mutants according to their sensitivity to bacteriophages recognizing the surface O antigen of the outer membrane lipopolysaccharide as a primary receptor. The variants differed in the presence and (de)acetylation of the lipopolysaccharide O antigen. A peptide antibiotic polymyxin, plasmid DNA, and lysozyme were used as probes. The role of acetylation of the O antigen of the lipopolysaccaride of E. coli outer membrane in modification of its permeability (correlating with bacteriophage sensitivity of the cells) was confirmed. Kinetic analysis using lysozyme was shown to be the optimal method for determination of the barrier function of E. coli outer membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, A.T. and Klebba, P.E, Effect of lipopolysaccharide structure on reactivity of antiporin monoclonal antibodies with the bacterial cell surface, J. Bacteriol., 1988, vol. 170, pp. 1063–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani, G, Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, J. Bacteriol., 1951, vol. 62, pp. 293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delcour, A.H, Outer membrane permeability and antibiotic resistance, Biochim. Biophys. Acta, 2009, vol. 1794, pp. 808–816.

    Article  CAS  PubMed  Google Scholar 

  • Domingues, M.M., Inacio, R.G., Raimundo, J.M., Martins, M., Castanho, M.A., and Santos, N.C, Biophysical characterization of polymyxin B interaction with LPS aggregates and membrane model systems, Biopolymers, 2012, vol. 98, pp. 338–344.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler, S. and Wirth, R, Transformation of bacteria with plasmid DNA by electroporation, Anal. Biochem., 1988, vol. 170, pp. 38–44.

    Article  CAS  PubMed  Google Scholar 

  • Golomidova, A.K., Kulikov, E.E., Prokhorov, N.S., Guerrero-Ferreira, R., Knirel, Y.A., Kostryukova, E.S., Tarasyan, K.K., and Letarov A.V, Branched lateral tail fiber organization in T5-like bacteriophages DT57C and DT571/2 is revealed by genetic and functional analysis, Viruses, 2016, vol. 8, no. 1. pii: E26. doi 10.3390/v8010026

    Article  PubMed  Google Scholar 

  • Graham, G.S., Treick, R.W., and Brunner, D.P, Effect of Ca2+ and Mg2+ upon the reassociation by Escherichia coli of material released by ethylenediaminetetraacetate, Curr. Microbiol., 1979, vol. 2, pp. 339–343.

    Article  CAS  Google Scholar 

  • Hitchcock, P.J, Analyses of gonococcal lipopolysaccharide in whole-cell lysates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: stable association of lipopolysaccharide with the major outer membrane protein (protein I) of Neisseria gonorrhoeae, Infect. Immun., 1984, vol. 46, pp. 202–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irvin, R.T., MacAlister, T.J., and Costerton, J.W, Tris(hydroxymethyl)aminomethane buffer modification of Escherichia coli outer membrane permeability, J. Bacteriol., 1981, vol. 145, pp. 1397–1403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeworrek, C., Evers, F., Howe, J., Brandenburg, K., Tolan, M., and Winter, R, Effects of specific versus nonspecific ionic interactions on the structure and lateral organization of lipopolysaccharides, Biophys. J., 2011, vol. 100, pp. 2169–2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, Y., Matsunaga, H., and Vaara, M, Polymyxin B octapeptide and polymyxin B heptapeptide are potent outer membrane permeability-increasing agents, J. Antibiot. (Tokyo), 1992, vol. 45, pp. 742–749.

    Article  CAS  Google Scholar 

  • Knirel, Y.A., Prokhorov, N.S., Shashkov, A.S., Ovchinnikova, O.G., Zdorovenko, E.L., Liu, B., Kostryukova, E.S., Larin, A.K., Golomidova, A.K., and Letarov, A.V, Variations in O-antigen biosynthesis and O-acetylation associated with altered phage sensitivity in Escherichia coli 4s, J. Bacteriol., 2015, vol. 197, pp. 905–912.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulikov, E., Kropinski, A.M., Golomidova, A., Lingohr, E., Govorun, V., Serebryakova, M., Prokhorov, N., Letarova, M., Manykin, A., Strotskaya, A., and Letarov, A, Isolation and characterization of a novel indigenous intestinal N4-related coliphage vB_EcoP_G7C, Virology, 2012, vol. 426, pp. 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver, H. and Burk, D, The determination of enzyme dissociation constants, J. Amer. Chem. Soc., 1934, vol. 56, pp. 658–666.

    Article  CAS  Google Scholar 

  • MacLachlan, P.R. and Sanderson, K.E, Transformation of Salmonella typhimurium with plasmid DNA: differences between rough and smooth strains, J. Bacteriol., 1985, vol. 161, pp. 442–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison, D.C. and Jacobs, D.M, Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides, Immunochem., 1976, vol. 13, pp. 813–818.

    Article  CAS  Google Scholar 

  • Nicas, T.I. and Hancock, R.E, Alteration of susceptibility to EDTA,polymyxin B and gentamicin in Pseudomonas aeruginosa by divalent cation regulation of outer membrane protein H1, J. Gen. Microbiol., 1983, vol. 129, pp. 509–517.

    CAS  PubMed  Google Scholar 

  • Repaske, R, Lysis of gram-negative bacteria by lysozyme, Biochim. Biophys. Acta, 1956, vol. 22, pp. 189–191.

    Article  CAS  PubMed  Google Scholar 

  • Repaske, R, Lysis of gram-negative organisms and the role of versene, Biochim. Biophys. Acta, 1958, vol. 30, pp. 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Rocque, W.J., Coughlin, R.T., and McGroarty, E.J, Lipopolysaccharide tightly bound to porin monomers and trimers from Escherichia coli K-12, J. Bacteriol., 1987, vol. 169, pp. 4003–4010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seed K.D, Battling phages: how bacteria defend against viral attack, PLoS Pathog., 2015, vol. 11, p. e1004847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherbet, G.V. and Lakshmi, M.S, Characterisation of Escherichia coli cell surface by isoelectric equilibrium analysis, Biochim. Biophys. Acta, 1973, vol. 298, pp. 50–58.

    Article  CAS  PubMed  Google Scholar 

  • Silhavy, T.J., Kahne, D., and Walker, S, The bacterial cell envelope, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, p. a000414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, A. and Reithmeier, R, Leakage of periplasmic enzymes from cells of heptose-deficient mutants of Escherichia coli, associated with alterations in the protein component of the outer membrane, J. Gen. Appl. Microbiol., 1975, vol. 21, pp. 109–118.

    CAS  Google Scholar 

  • Tsai, C.M. and Frasch, C.E., A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels, Anal. Biochem., 1982, vol. 119, pp. 115–119.

  • Tsuchido, T., Katsui, N., Takeuchi, A., Takano, M., and Shibasaki, I, Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment, Appl. Environ. Microbiol., 1985, vol. 50, pp. 298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu, Q., Yin, J., Fu, J., Herrmann, J., Li, Y., Yin, Y., Stewart, A.F., Muller, R., and Zhang, Y., Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency, Sci. Rep., 2016, vol. 6, P. 24648. doi 10.1038/srep24648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tytgat, H.L. and Lebeer, S, The sweet tooth of bacteria: common themes in bacterial glycoconjugates, Microbiol. Mol. Biol. Rev., 2014, vol. 78, pp. 372–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Woude, M.W, Phase variation: how to create and coordinate population diversity, Curr. Opin. Microbiol., 2011, vol. 14, pp. 205–211.

    Article  PubMed  Google Scholar 

  • van der Woude, M.W. and Baumler, A.J, Phase and antigenic variation in bacteria, Clin. Microbiol. Rev., 2004, vol. 17, pp. 581–611.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verkleij, A., van Alphen, L., Bijvelt, J., and Lugtenberg, B, Architecture of the outer membrane of Escherichia coli K12. II. Freeze fracture morphology of wild type and mutant strains, Biochim. Biophys. Acta, 1977, vol. 466, pp. 269–282.

    Article  CAS  PubMed  Google Scholar 

  • Wiegand, I., Hilpert, K., and Hancock, R.E, Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances, Nat. Protoc., 2008, vol. 3, pp. 163–175.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Kulikov.

Additional information

Original Russian Text © E.E. Kulikov, J. Majewska, N.S. Prokhorov, A.K. Golomidova, E.V. Tatarskiy, A.V. Letarov, 2017, published in Mikrobiologiya, 2017, Vol. 86, No. 3, pp. 284–291.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, E.E., Majewska, J., Prokhorov, N.S. et al. Effect of O-acetylation of O antigen of Escherichia coli lipopolysaccharide on the nonspecific barrier function of the outer membrane. Microbiology 86, 310–316 (2017). https://doi.org/10.1134/S0026261717030080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717030080

Keywords

Navigation