Skip to main content
Log in

Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The composition of the membrane lipids and cytosol soluble carbohydrates under three kinds of unfavorable impacts (osmotic, oxidative, and cold) was studied. Changes in the composition of the membrane lipids, specifically, increasing content of phosphatidic acids and decreasing levels of phosphatidylcholines and phosphatidylethanolamines, were the general response to the impacts. The degree of fatty acid unsaturation increased in all dominant phospholipids under osmotic shock, only in cardiolipins and phosphatidic acids under oxidative stress, and only in phosphatidylcholines under cold shock. Increased sterol content was observed only under cold and osmotic treatments. No general pattern was revealed in the composition of cytosol carbohydrates in response to stresses. Oxidative stress had almost no effect on the carbohydrate composition, while osmotic and cold treatments resulted in increased glycerol content and decreased total carbohydrate content. The mechanisms of fungal response to various stress impacts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bader, N., Vanier, G., Liu, H., Gravelat, F.N., Urb, M., Hoareau, C.M.Q., Campoli, P., Chabot, J., Filler, S.G., and Sheppard, D.C., Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence, Infect. Immun., 2010, vol. 78, no. 7, pp. 3007–3018.

    Article  CAS  Google Scholar 

  • Alvarez, F.J., Douglas, L.M., and Konopka, J.B., Sterolrich plasma membrane domains in fungi, Eukaryot. Cell., 2007, vol. 6, no. 5, pp. 755–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelova, M.B., Pashova, S.B., Spasova, B.K., Vassilev, S.V., and Slokoska, L.S., Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat, Mycol. Res., 2005, vol. 109, no. 2, pp. 150–158.

    Article  CAS  PubMed  Google Scholar 

  • Benning, C., Huang, Z.H., and Gage, D.A., Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation, Arch. Biochem. Biophys., 1995, vol. 317, no. 1, pp. 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Brobst, K.M., Gsa–liquid chromatography of trimethylsilyl sugar derivatives, in Methods in Carbohydrate Chemistry, Whistler, R.L. and Wolfrom, M.L., Eds., New York: Academic, 1965.

    Google Scholar 

  • Crowe, J.H., Trehalose as a “chemical chaperone”, in Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks, Adv. Exp. Med. Biol., Csermely, P. and Vígh, L., Eds., New York: Springer, 2007, pp. 143–158.

    Chapter  Google Scholar 

  • Duran, R., Cary, J.W., and Calvo, A.M., Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi, Toxins (Basel), 2010, vol. 2, no. 4, pp. 367–381.

    Article  CAS  Google Scholar 

  • Elbein, A.D., Pan, Y.T., Pastuszak, I., and Carroll, D., New insights on trehalose: a multifunctional molecule, Glycobiology, 2003, vol. 13, no. 4, pp. 17–27.

    Article  Google Scholar 

  • Feofilova, E.P., Usov, A.I., Mysyakina, I.S., and Kochkina, G.A., Trehalose: chemical structure, biological functions, and practical application, Microbiology (Moscow), 2014, vol. 83, no. 3, pp. 184–194.

    Article  CAS  Google Scholar 

  • França, M.B., Panek, A.D., and Eleutherio, E.C.A., Oxidative stress and its effects during dehydration, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2007, vol. 146, no. 4, pp. 621–631.

    Article  PubMed  Google Scholar 

  • Garton, G.A., Goodwin, T.W., and Lijinsky, W., Studies in carotenogenesis; general conditions governing beta-carotene synthesis by the fungus Phycomyces blakesleeanus Burgeff., Biochem. J., 1951, vol. 48, no. 2, pp. 154–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, K.H. and Prade, R.A., Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans, Mol. Microbiol., 2002, vol. 43, no. 5, pp. 1065–1078.

    Article  CAS  PubMed  Google Scholar 

  • Hohmann, S., Osmotic stress signaling and osmoadaptation in yeasts, Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 2, pp. 300–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iturriaga, G., Suárez, R., and Nova-Franco, B., Trehalose metabolism: from osmoprotection to signaling, Int. J. Mol. Sci., 2009, vol. 10, no. 9, pp. 3793–3810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings, D.H., Polyol metabolism in fungi, Adv. Microb. Physiol., 1984, vol. 25, pp. 149–193.

    Article  CAS  PubMed  Google Scholar 

  • Keits, M., Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, Amsterdam: Elsevier, 1972.

    Google Scholar 

  • Kooijman, E.E., Chupin, V., de Kruijff, B., and Burger, K.N.J., Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid, Traffic, 2003, vol. 4, no. 3, pp. 162–174.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Harvey, L.M., and McNeil, B., Oxidative stress in industrial fungi, Crit. Rev. Biotechnol., 2009, vol. 29, no. 3, pp. 199–213.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., McNeil, B., and Harvey, L.M., Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D, Free Radic. Biol. Med., 2008, vol. 44, no. 3, pp. 394–402.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, H.T. and Gallop, J.L., Membrane curvature and mechanisms of dynamic cell membrane remodelling, Nature, 2005, vol. 438, no. 7068, pp. 590–596.

    Article  CAS  PubMed  Google Scholar 

  • Navarro, R.E. and Aguirre, J., Posttranscriptional control mediates cell type-specific localization of catalase A during Aspergillus nidulans development, J. Bacteriol., 1998, vol. 180, no. 21, pp. 5733–5738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols, B.W., Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chromatography, Biochim. Biophys. Acta., 1963, vol. 70, pp. 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Nwaka, S. and Holzer, H., Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae, Prog. Nucleic Acid Res. Mol. Biol., 1998, vol. 58, pp. 197–237.

    Article  CAS  PubMed  Google Scholar 

  • Pedroso, N., Matias, A.C., Cyrne, L., Antunes, F., Borges, C., Malhó, R., de Almeida, R.F.M., Herrero, E., and Marinho, H.S., Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae, Free Radic. Biol. Med., 2009, vol. 46, no. 2, pp. 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Smolyanyuk, E.V., Bilanenko, E.N., Tereshina, V.M., Kachalkin, A.V., and Kamzolkina, O.V., Effect of sodium chloride concentration in the medium on the composition of the membrane lipids and carbohydrates in the cytosol of the fungus Fusarium sp., Microbiology (Moscow), 2013, vol. 82, no. 5, pp. 600–608.

    Article  CAS  Google Scholar 

  • Somogyi, M., Determination of blood sugar, J. Biol. Chem., 1945, vol. 160, no. 1, pp. 69–73.

    CAS  Google Scholar 

  • Tereshina, V.M., Memorskaya, A.S., Kotlova, E.R., and Feofilova, E.P., Membrane lipid and cytosol carbohydrate composition in Aspergillus niger under heat shock, Microbiology (Moscow), 2010, vol. 79, no. 1, pp. 40–44.

    Article  CAS  Google Scholar 

  • Tereshina, V.M., Memorskaya, A.S., and Kotlova E.R., The effect of different heat influences on composition of membrane lipids and cytosol carbohydrates in mycelial fungi, Microbiology (Moscow), 2011, vol. 80, no. 4, pp. 455–460.

    Article  CAS  Google Scholar 

  • Vigh, L., Escribá, P.V., Sonnleitner, A., Sonnleitner, M., Piotto, S., Maresca, B., Horváth, I., and Harwood, J.L., The significance of lipid composition for membrane activity: new concepts and ways of assessing function, Prog. Lipid Res., 2005, vol. 44, no. 5, pp. 303–344.

    Article  CAS  PubMed  Google Scholar 

  • Yehia, A.-G.M., Eman, H.F.A.M., and Abd Elzaher, E.H.F., Response of the higher basidiomycetic Ganoderma resinaceum to sodium chloride stress, Mycobiology, 2007, vol. 35, no. 3, pp. 124–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Tereshina.

Additional information

Original Russian Text © E.A. Ianutsevich, O.A. Danilova, N.V. Groza, V.M. Tereshina, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 3, pp. 283–292.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ianutsevich, E.A., Danilova, O.A., Groza, N.V. et al. Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact. Microbiology 85, 302–310 (2016). https://doi.org/10.1134/S0026261716030152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716030152

Keywords

Navigation