Skip to main content
Log in

Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya Grandis

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Torreya grandis is a rare tree species of economic value. Its seeds are rich in lipids, although their use is limited by their high cost. Recent studies demonstrated that certain endophytic fungi can produce metabolites similar to those produced by the host plant. In the present study, endophytic fungal strains capable of producing lipids were isolated from wild Chinese Torreya grandis. Among these, the XF-38 strain had the highest lipid content at 17.68%. Comparative analysis of the fatty acid composition of lipids produced by endophytic fungi and Torreya seeds by GC-MS showed that the two sources shared some of the same components, including linoleic acid, oleic acid, and sciadonic acid (5c, 11c, 14c-eicosatrienoic acid). The morphology and internal transcribed spacer rDNA of the XF-38 strain were determined, and a BLAST search showed that this strain belongs to Bionectria ochroleuca. Finally, generation of a growth curve and determination of the lipid content of strain XF-38 confirmed that lipid production was related to the amount of mycelium, and the lipid content resched 3.1 g/L in the microcrystalline cellulose meduim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asai, T., Otsuki, S., Taniguchi, T., Monde, K., Yamashita, K., Sakurai, H., Ozeki, T., and Oshima, Y., Structures and absolute configurations of short-branched fatty acid dimers from an endophytic fungus of Aloe arborescens, Tetrahedron Lett., 2013, vol. 54, pp. 3402–3405.

    Article  CAS  Google Scholar 

  • Berger, A., Monnard, I., Baur, M., Charbonnet, C., Safonova, I., and Jomard, A., Epidermal anti–inflammatory properties of 5,11,14 20:3:effects on mouse ear edema, PGE2 levels in cultured keratinocytes, and PPAR activetion, Lipids Health Dis., 2002, vol. 1, pp. 1–12.

    Article  Google Scholar 

  • Chen, B.Q., Cui, X.Y., Zhao, X., Zhang, Y.H., Piao, H.S., Kim, J.H., Lee, B.C., Pyo, H.B., and Yun, Y.P., Antioxidative and acute antiinflammatory effects of Torreya grandis, Fitoterapia, 2006, vol. 77, pp. 262–267.

    Article  PubMed  Google Scholar 

  • Dai, C.C., Tao, J., Xie, F., Dai, Y., and Zhao, M., Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity, Afr. J. Biotechnol., 2007, vol. 6, pp. 2130–2134.

    CAS  Google Scholar 

  • Deng, H.H., Hong, W., Wu, C.Z., et al., Separation, selection and identification on producing lipid strains of endophytic fungi from Pinus massoniana, J. Plant Resour. Environ., 2014. vol. 23, no. 2, pp. 27–33.

    Google Scholar 

  • Endo, Y., Osada, Y., Kimura, F., and Fujimoto, K., Effects of Japanese torreya (Torreya nuciferu) seed oil on lipid metabolism in rats, Nutrition, 2006, vol. 22, pp. 553–558.

    Article  CAS  PubMed  Google Scholar 

  • Strobell, G.A., Knighton, B., Kluck, K., Ren, Y., Livinghouse, T., Griffin, M., Spakowicz, D., and Sears, J., The production of myco–diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072), Microbiology (UK), 2008, vol. 154, pp. 3319–3328.

    Article  CAS  PubMed  Google Scholar 

  • Samuels, G.J., Suarez, C., Solis, K., Holmes, K.A., Thomas, S.E., Ismaiel, A., and Evans, H.C., Trichoderma theobromicola and T. paucisporum: two new species isolated from cacao in South America, Mycol. Res., 2006, vol. 110, pp. 381–392.

    Article  PubMed  Google Scholar 

  • Schmeda–Hirschmann, G., Hormazabal, E., Astudillo, L., Rodriguez, J., and Theoduloz, C., Secondary metabolites from endophytic fungi isolated from the Chilean gymnosperm Prumnopitys andina (Lleuque), World J. Microbiol. Biotechnol., 2005, vol. 21, pp. 27–32.

    Article  Google Scholar 

  • Guo, L.D., Hyde, K.D., and Liew, E.C.Y., Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences, Mol. Phylogenet. Evol., 2001, vol. 20, pp. 1–13.

    Article  PubMed  Google Scholar 

  • Schroers, H.-J., Samuels, G.J., Seifert, K.A., and Gams, W., Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium–like fungi, Mycologia, 1999, vol. 91, pp. 365–385.

    Article  Google Scholar 

  • Huang Y.J., Wang J.F., Li G.L., Zheng, G., and Su, W., Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis, FEMS Immunol. Med. Microbiol., 2001, vol. 31, pp. 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Saeed, M.K, Deng Y.L., Dai R.J., Li, W., and Igbal, Z., Appraisal of antinociceptive and anti–inflammatory potential of extract and fractions from the leaves of Torreya grandis Fort ex. Lindl., J. Ethnopharmacol., 2010, vol. 127, pp. 414–418.

    Article  PubMed  Google Scholar 

  • Stierle, A., Strobel, G., and Stierle, D., Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew, Science, 1993, vol. 260, p. 214.

    Article  CAS  PubMed  Google Scholar 

  • Tan, Q., Yan, X., Lin X, Huang, Y., Zheng, Z., Song, S., Lu, C., and Shen, Y., Chemical constituents of the endophytic fungal strain Phomopsis sp. NXZ–05 of Camptotheca acuminata, Helvet. Chim. Acta, 2007, vol. 90, pp. 1811–1817.

    Article  CAS  Google Scholar 

  • Tanaka, T., Morishige, J., Takimoto, T., Takai, Y., and Satouchi, K., Metabolic characterization of sciadonic acid as an effective substitute for arachidonate of phosphatidyrlinositol, Eur. J. Biochem., 2001, vol. 268, pp. 4928–4939.

    Article  CAS  PubMed  Google Scholar 

  • Teng, Y. and Dai, C.C., Interactions of two endophytic fungi colonizing Atractylodes lancea and effects on the host’s essential oils, Acta Ecol. Sinica, 2013, vol. 33, pp. 87–93.

    Article  Google Scholar 

  • Vatcharin, R., Sathit, B., Souwalak, P., and Jariya, S., Amide, cyclohexenone, and cyclohexenone–sordaricin derivatives from the endophytic fungus Xylaria plebeja PSU-G30, Tetrahedron, 2003, vol. 69, pp. 10711–10717.

    Google Scholar 

  • Wolff, R., The phylogenetic significance of sciadonic (all-cis 5,11,14-20:3) acid in gymnosperms and its quantitative significance in land plants, J. Amer. Oil Chem. Soc., 1999, vol. 76, pp. 1515–1516.

    Article  CAS  Google Scholar 

  • Yu, M.J., Shin, H.J., Ke, J.C., and Tzong, H.L., TMC-151 a monoacetate, a new polyketide from Bionectria ochroleuca, ChemInform, 2007, vol. 38, p. 26.

    Google Scholar 

  • Yu, Y. and Hu, C.H., Separation and identification of a new Taxus chinensis var. mairei endophytic fungus (Bionectria sp.) and the activity of its metabolites, J. Southwest Univ. (Nat. Sci. Ed.) 2007, vol. 29, pp. 131–135.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsheng Dong.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Jin, Z., Jin, Q. et al. Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya Grandis . Microbiology 84, 710–716 (2015). https://doi.org/10.1134/S0026261715050173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261715050173

Keywords

Navigation