Skip to main content
Log in

Ca2+ signaling in prokaryotes

  • Reviews
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The role of Ca2+ ions in the regulation of motility, cell cycle, and division of prokaryotes is discussed, as well as their involvement in the pathogenesis of some infectious diseases. The structural and functional organization of the prokaryotic Ca2+ signaling system and the mechanisms of Ca2+ membrane transport and homeostasis are described. Special attention is paid to the role of Ca2+ cation channels, Ca2+ transporters, and Ca2+-binding proteins in the regulation of the intercellular Ca2+ concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clapham, D.E., Calcium signaling, Cell, 1995, vol. 80, pp. 259–268.

    Article  PubMed  CAS  Google Scholar 

  2. Bootman, M.D., Peppiatt, C.M., Prothero, L.S., Mackenzie, L., De Smet, P., Travers, M., Tovey, S.C., Seo J.T., Berridge, M.J., Ciccolini, F., and Lipp, P., Calcium signaling—an overview, Cell Dev. Biol., 2001, vol. 12, pp. 3–10.

    Article  CAS  Google Scholar 

  3. Shemarova, I.V., Vnutrikletochnaya signalizatsiya u nizshikh eukariot (Intracellular Signaling in Lower Eukaryotes), St.-Petersburg: Komil’fo, 2010.

    Google Scholar 

  4. Tisa, L.S. and Adler, J., Cytoplasmic free-Ca2+ level rises with repellents and falls with attractants in Escherichia coli chemotaxis, Proc. Acad. Sci. U. S, A., 1995, vol. 92, pp. 10777–10781.

    Article  CAS  Google Scholar 

  5. Herbaud, M.L., Guiseppi, A., Denizot, F., Haiech, J., and Kilhoffer, M.C., Calcium signalling in Bacillus subtilis, Biochim. Biophys. Acta, 1998, vol. 1448, pp. 212–226.

    Article  PubMed  CAS  Google Scholar 

  6. Dominguez, D.C., Calcium signaling in bacteria, Mol. Microbiol., 2004, vol. 54, pp. 291–297.

    Article  PubMed  CAS  Google Scholar 

  7. Onoda, T., Enokizono, J., Kaya, H., Oshima, A., Freestone, P., and Norris, V., Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form Nc-7, J. Bacteriol., 2000, vol. 182, pp. 1419–1422.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Shi, Y., Zhao, W., Zhang, W., Ye, Z., and Zhao, J., Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 11334–11339.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Yang, R., Xi, C., Sita, D.R., Sakai, S., Tsuchiya, K., Hara, H., Shen, Y., Qu, H., Fang, R., Mitsuyama, M., and Kawamura, I., The Rd1 locus in the Mycobacterium tuberculosis genome contributes to the maturation and secretion of IL-1α from infected macrophages through the elevation of cytoplasmic calcium levels and calpain activation, Pathog. Dis., 2013. doi: 10.1111/2049-632X.12075

    Google Scholar 

  10. Paidhungat, M., Ragkousi, K., and Setlow, P., Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca2+-dipicolinate, J. Bacteriol., 2001, vol. 183, pp. 4886–4893.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Hovi, T., Williams, S.C., and Allison, A.C., Divalent cation ionophore A23187 forms lipid soluble complexes with leucine and other amino acids, Nature, 1975, vol. 256, pp. 70–72.

    Article  PubMed  CAS  Google Scholar 

  12. Gangola, P. and Rosen, B.P., Maintenance of intracellular calcium in Escherichia coli, J. Biol. Chem., 1987, vol. 262, pp. 12570–12574.

    PubMed  CAS  Google Scholar 

  13. Jones, H.E., Holland, I.B., and Campbell, A.K., Direct measurement of free Ca2+ shows different regulation of Ca2+ between the periplasm and the cytosol of Escherichia coli, Cell Calcium, 2002, vol. 32, pp. 183–192.

    Article  PubMed  CAS  Google Scholar 

  14. Futsaether, C.M. and Johnsson, A., Using fura-2 to measure intracellular free calcium in Propionibacterium acnes, Can. J. Microbiol., 1994, vol. 40, pp. 439–445.

    Article  PubMed  CAS  Google Scholar 

  15. Watkins, N.J., Knight, M.R., Trewavas, A.J., and Campbell, A.K., Free calcium transients in chemotactic and non-chemotactic strains of Escherichia coli determined by using recombinant aequorin, Biochem. J., 1995, vol. 306, pp. 865–869.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Guragain, M., Lenaburg, D.L., Moore, F.S., Reutlinger, I., and Patrauchan, M.A., Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters and modulates swarming motility, Cell Calcium, 2013, vol. 54, pp. 350–361.

    Article  PubMed  CAS  Google Scholar 

  17. Ordal, G.W., Calcium ion regulates chemotactic behavior in bacteria, Nature, 1977, vol. 270, pp. 66–67.

    Article  PubMed  CAS  Google Scholar 

  18. Tisa, L.S., Olivera, B.M., and Adler, J., Inhibition of Escherichia coli chemotaxis by ω-conotoxin, a calcium ion channel blocker, J. Bacteriol., 1993, vol. 175, pp. 1235–1238.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Theodorou, M.C. and Kyriakidis, D.A., Calcium channels blockers inhibit the signal transduction through the AtoSC system in Escherichia coli, Eur. J. Pharm. Sci, 2012, vol. 47, pp. 84–96.

    Article  PubMed  CAS  Google Scholar 

  20. Naseem, R., Wann, K.T., Holland, I.B., and Campbell, A.K., ATP regulates calcium efflux and growth in E. coli, J. Mol. Biol., 2009, vol. 391, pp. 42–56.

    Article  PubMed  CAS  Google Scholar 

  21. Dey, R., Hoffman, P.S., and Glomski, I.J., Germination and amplification of anthrax spores by soil-dwelling amoebas, Appl. Environ. Microbiol., 2012, vol. 78, pp. 8075–8081.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Norris, V., Grant, S., Freestone, P., Canvin, J., Sheikh, F.N., Toth, I., Trinei, M., Modha, K., and Norman, R.I., Calcium signalling in bacteria, J. Bacteriol., 1996, vol. 178, pp. 3677–3682.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Tiwari, R.P., Reeve, W.G., and Glenn, A.R., Mutations conferring acid sensitivity in the acid-tolerant strains Rhizobium melioti WSM419 and Rhizobium leguminosarum biovar viciae WSM710, FEMS Lett., 1992, vol. 100, pp. 107–112.

    Article  CAS  Google Scholar 

  24. Jimenez-Sanchez, A., Guzman, E.C., and Botello, E., An approach to the control of the initiation of chromosome replication in Escherichia coli, Curr. Top. Mol. Genet. (Life Sci Adv.), 1993, vol. 1, pp. 33–48.

    Google Scholar 

  25. Stevenson, M.A. and Calderwood, S.K., Members of the 70-kilodalton heat shock protein family contain a highly conserved calmodulin-binding domain, Mol. Cell. Biol., 1990, vol. 10, pp. 1234–1238.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Hwang, D.S., Crooke, E., and Kornberg, A., Aggregated DnaA protein is dissociated and activated for DNA replication by phospholipase or DNAK protein, J. Biol. Chem., 1990, vol. 265, pp. 19244–19248.

    PubMed  CAS  Google Scholar 

  27. Straley, S.C., Plano, G.V., Skrzypek, E., Haddix, P.L., and Fields, K.A., Regulation by Ca2+ in the Yersinia low-Ca2+ response, Mol. Microbiol., 1993, vol. 8, pp. 1005–1010.

    Article  PubMed  CAS  Google Scholar 

  28. Smith, R.J., Calcium and bacteria, Adv. Microb. Physiol., 1995, vol. 37, pp. 83–103.

    Article  PubMed  CAS  Google Scholar 

  29. Rossi Paccani, S., Tonello, F., Patrussi, L., Capitani, N., Simonato, M., Montecucco, C., and Baldari, C.T., Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signaling, Cell MicroBiol., 2007, vol. 9, pp. 924–929.

    Article  PubMed  Google Scholar 

  30. Torrecilla, I., Leganés, F., Bonilla, I., and Fernández-Piñas, F., Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacteria, Plant Physiol., 2000, vol. 123, pp. 161–176.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Torrecilla, I., Leganés, F., Bonilla, I., and Fernández-Piñas, F. A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp. pcc7120, Microbiology (UK), 2004, vol. 150, pp. 3731–3739.

    Article  CAS  Google Scholar 

  32. Knight, M.R., Campbell, A.K., Smith, A.J., and Trewalas, A.J., Recombinant aequrin as a probe for cytosolic free Ca2+ in Escherichia coli, FEBS Lett., 1991, vol. 282, pp. 405–408.

    Article  PubMed  CAS  Google Scholar 

  33. Holland, I.B., Jones, H.E., Campbell, A.K., and Jacq, A., An assessment of the role of intracellular free Ca2+ in E. coli, Biochimie, 1999, vol. 81, pp. 901–907.

    Article  PubMed  CAS  Google Scholar 

  34. Youatt, J., Calcium and microorganisms, Crit. Rev. MicroBiol., 1993, vol. 19, pp. 83–97.

    Article  PubMed  CAS  Google Scholar 

  35. Norris, V. Goldberg, M., Voskuil, J., McGurk, G., and Holland, I.B., Calcium in bacteria: a solution to which problem?, Mol. Microbiol., 1991, vol. 5, pp. 775–778.

    Article  PubMed  CAS  Google Scholar 

  36. Berridge, M.J., Capacitatative calcium entry, Biochem. J., 1995, vol. 312, pp. 1–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Izquierdo J.H., Bonilla-Abadía, F., Cañas, C.A., and Tobón G.J., Calcium, channels, intracellular signaling and autoimmunity, Reumatol. Clin., 2013. pii: S1699-258X(13)00158-7

    Google Scholar 

  38. Trebak, M., Zhang, W., Ruhle, B., Henkel, M.M., González-Cobos, J.C., Motiani, R.K., Stolwijk, J.A., Newton, R.L., and Zhang, X., What role for store-operated Ca2+ entry in muscle?, Microcirculation, 2013, vol. 20, pp. 330–336.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Matsushita, T.H., Hirata, I., and Kusaka, I., Calcium channels in bacteria, N.Y. Acad. Sci., 1989, vol. 560, pp. 426–429.

    Article  Google Scholar 

  40. Durell, S.R. and Guy, H.R., A putative prokariote voltage-gated Ca2+ channel with only one 6TM motif per subunit, Biochem. Biophys. Res. Commun., 2001, vol. 281, pp. 741–746.

    Article  PubMed  CAS  Google Scholar 

  41. Rensch, R.N., Huang, R., and Bramble, L.L., Poly-3-hydroxybutyrate, polyphosphate complexes form voltage-activated Ca2+ channels, Biophys. J., 1995, vol. 69, pp. 754–766.

    Article  Google Scholar 

  42. Ren, D., Navarro, B., Xu, H., Yue, L., Shi, Q., and Clapham, D.E., A prokaryotic voltage-gated sodium channel, Science, 2001, vol. 294, pp. 2372–2375.

    Article  PubMed  CAS  Google Scholar 

  43. Ertel, E.A., Campbell, K.P., Harpold, M.M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Snutch, T.P., Tanabe, T., Birnbaumer, L., Tsien, R.W., and Catterall, W.A., Nomenclature of voltage-gated calcium channels, Neuron, 2000, vol. 25, pp. 533–535.

    Article  PubMed  CAS  Google Scholar 

  44. Koishi, R., Xu, H., Ren, D., Navarro, B., Spiller, B.W., Shi, Q., and Clapham, D.E., A superfamily of voltage-gated sodium channels in bacteria, J. Biol. Chem., 2004, vol. 279, pp. 9532–9538.

    Article  PubMed  CAS  Google Scholar 

  45. Tang, L., Gama, El-Din, T.M., Payandeh, J., Martinez, G.Q., Heard, T.M., Scheuer, T., Zheng, N., and Catterall, W.A., Structural basis for Ca2+ selectivity of a voltage-gated calcium channel, Nature, 2013. doi: 10.1038/nature12775

    Google Scholar 

  46. Shaya, D., Kreir, M., Robbins, R.A., Wong, S., Hammon, J., Brüggemann, A., and Minor, D.L., Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, pp. 12313–12318.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Tisa, L.S., Sckelsky, J.J., and Adler, J., Effects of organic antagonists of Ca2+, Na+, and K+ on chemotaxis and motility of Escherichia coli, J. Bacteriol., 2000, vol. 182, pp. 4856–4861.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Das, S. and Reusch, R.N., pH regulates cation selectivity of poly-3-hydroxybutyrate/polyphosphate channels from E. coli in planar lipid bilayers, Biochemistry, 2001, vol. 40, pp. 2075–2079.

    Article  PubMed  CAS  Google Scholar 

  49. Ter-Nikogosyan, V.A., Vartanyan, M.K., and Trchunyan, A.A., Bacteriophage-induced changes in the membrane potential and ion transport through S. typhimurium LT12 membranes, Biofizika, 1991, vol. 32, pp. 281–286.

    Google Scholar 

  50. Onek, L.A. and Smith, R.J., Calmodulin and calcium mediated regulation in prokariotes, J. Gen. Microbiol., 1992, vol. 138, pp. 1039–1049.

    Article  PubMed  CAS  Google Scholar 

  51. Harmon, A.C., Prasher, D., and Cormier, M.J., High affinity calcium binding proteins in Escherichia coli, Biochem. Biophys. Res. Commun., 1985, vol. 127, pp. 31–36.

    Article  PubMed  CAS  Google Scholar 

  52. Fry, I.J., Villa, L., Kuehn, G.D., and Hageman, J.H., Calmodulin-like protein from Bacillus subtilis, Biochem. Biophys. Res. Commun., 1986, vol. 134, pp. 212–217.

    Article  PubMed  CAS  Google Scholar 

  53. Fry, I.J., Becker-Hapak, M., and Hageman, J.H., Purification and properties of an intracellular calmodulinlike protein from Bacillus subtilis, J. Bacteriol., 1991, vol. 173, pp. 2506–2513.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Rotharmel, T. and Wagner, G., Isolation and characterization of a calmodulin-like protein from Halobacterium salinarium, J. Bacteriol., 1995, vol. 177, pp. 864–866.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Yonekawa, T., Ohnishi, Y., and Horinouchi, S., A calmodulin-like protein in the bacterial genus Streptomyces, FEMS Microbiol. Lett., 2005, vol. 244, pp. 315–321.

    Article  PubMed  CAS  Google Scholar 

  56. Michiels, J., Xi, C., Verhaert, J., and Vanderleyden, J., The functions of Ca2+ in bacteria: a role for EF-hand proteins?, Trends MicroBiol., 2002, vol. 10, pp. 87–93.

    Article  PubMed  CAS  Google Scholar 

  57. Wang, S.L., Fan, K.Q., Yang, X., Lin, Z.X., Xu, X.P., and Yang, K.Q., CabC, an Ef-hand calcium-binding protein, is involved in Ca2+-mediated regulation of spore germination and aerial hypha formation in Streptomyces coelicolor, J. Bacteriol., 2008, vol. 190, pp. 4061–4068.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Sengupta, L.K., Singh, B.B., Mishra, R., Pandey, P.K., Singh, S., Sengupta, S., and Bisen, P.S., Calcium-dependent metabolic regulations in prokaryotes indicate conserved nature of calmodulin gene, Indian J. Exp. Biol., 1998, vol. 36, pp. 136–147.

    PubMed  CAS  Google Scholar 

  59. Onek, L.A., Lea, P.J., and Smith, R.J., Isolation and characterisation of a calmodulin-like protein from the cyanobacterium Nostoc sp. PCC 6720, Arch. Microbiol., 1994, vol. 161, pp. 352–358.

    Article  CAS  Google Scholar 

  60. Reddy, P.T., Prasad, C.R., Reddy, P.H., Reeder, D., McKenney, K., Jaffe, H., Dimitrova, M.N., Ginsburg, A., Peterkofsky, A., and Murthy, P.S., Cloning and expression of the gene for a novel protein from Mycobacterium smegmatis with functional similarity to eukaryotic calmodulin, J. Bacteriol., 2003, vol. 185, pp. 5263–5268.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Inouye, S., Franceshini, T., and Inouye, M., Structural similarities between the developmental-specific protein S from a Gram-negative bacterium, Myxococcus xanthus, and calmodulin, Proc. Natl. Acad. Sci. U. S. A., 1983, vol. 80, pp. 6828–6833.

    Article  Google Scholar 

  62. Chang, B.-Y. and White, D., Cell surface modifications induced by calcium ion in the myxobacterium Stigmatella aurantiaca, J. Bacteriol., 1992, vol. 174, pp. 5780–5787.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Hu, Y., Zhang, X., Shi, Y., Zhou, Y., Zhang, W., Su, X.D., Xia, B., Zhao, J., and Jin, C., Structures of anabaena calcium-binding protein CcbP: insights into Ca2+ signaling during heterocyst differentiation, J. Biol. Chem., 2011, vol. 286, pp. 12381–12388.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Szurmant, H., Zhao, H., Mohan, M.A., Hoch, J.A., and Varughese, K.I., The crystal structure of YycH involved in the regulation of the essential YycFG two-component system in Bacillus subtilis reveals a novel tertiary structure, Protein Sci., 2006, vol. 15, pp. 929–934.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Shukla, S.K. and Rao, T.S., Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study, Colloids Surf., 2013, vol. 103, pp. 448–454.

    Article  CAS  Google Scholar 

  66. Carafoli, E., Intracellular calcium homeostasis, Annu. Rev. Biochem., 1987, vol. 56, pp. 395–433.

    Article  PubMed  CAS  Google Scholar 

  67. Avdonin, P.V. and Tkachuk, V.A., Retseptory i vnutrikletochnyi kal’tsii, (Receptors and Intracellular Calcium), Moscow: Nauka, 1994.

    Google Scholar 

  68. Lynn, A.R. and Rosen, B.P., Calcium transport in prokaryotes, in Ion Transport in Prokaryotes, Rosen, B.P. and Silver, S., Eds., New York: Academic, 1987, pp. 181–201.

    Chapter  Google Scholar 

  69. Berkelman, T., Garret-Engele, P., and Hoffman, N.E., The pacL gene of Synechococcus sp. strain PCC 7942 encodes a Ca2+-transporting ATPase, J. Bacteriol., 1994, vol. 176, pp. 4430–4436.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Kanamaru, K., Kashiwagi, S., and Mizuno, T., The cyanobacterium Synechococcus sp. PCC 7942 possesses 2 distinct genes encoding cation-transporting Ptype ATPases, FEBS Lett., 1993, vol. 330, pp. 99–104.

    Article  PubMed  CAS  Google Scholar 

  71. Gambel, A.M., Desrosiers, M.G., and Menick, D.R., Characterization of a P-type Ca2+-ATPase from Flavobacterium odoratum, J. Biol. Chem., 1992, vol. 267, pp. 15923–15931.

    PubMed  CAS  Google Scholar 

  72. Ivey, D.M., Guffanti, A.A., Zemsky, J., Pinner, E., Karpel, R., Padan, E., Schuldiner, S., and Krulwich, T.A., Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na2+/H+ anti-porter-deficient strains by the overexpressed gene, J. Biol. Chem., 1993, vol. 268, pp. 11296–11303.

    PubMed  CAS  Google Scholar 

  73. Dibrov, P.A., Calcium transport mediated by NhaA, a Na+/H+ antiporter from Escherichia coli, FEBS Lett., 1993, vol. 336, pp. 530–534.

    Article  PubMed  CAS  Google Scholar 

  74. Trombe, M.-C., Rieux, V., and Baille, F., Mutations which alter the regulation of competence in treptococcus pneumoniae, J. Bacteriol., 1994, vol. 176, pp. 1992–1996.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shemarova.

Additional information

Original Russian Text © I.V. Shemarova, V.P. Nesterov, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 5, pp. 511–518.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shemarova, I.V., Nesterov, V.P. Ca2+ signaling in prokaryotes. Microbiology 83, 431–437 (2014). https://doi.org/10.1134/S0026261714050233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714050233

Keywords

Navigation