Skip to main content
Log in

Chemical Weathering Indexes: Implication for Paleoclimatic Reconstructions, with the Vendian–Lower Cambrian Section of Podolian Transnistria as Example

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The article provides an overview of various indexes/indicators (Vogt, Parker, CIA, CIW, PIA, MIA, and others) used for studying weathering profiles/crusts and reconstructing paleoclimatic environments of sedimentary sequence accumulation. Their possibilities are demonstrated with Vendian–Lower Cambrian terrigenous rocks of Podolian Transnistria (southwestern slope of the Ukrainian Shield) as example. Distribution of index ba1 values in this section indicates the presence of material subjected to intense transformation during the chemical weathering in mudstones of the Nagoryany Formation, the lower part of the Danilovka and the middle part of the Studenitsa formations. For mudstones of the Danilovka–Zbruch interval, the HM values are close to the HMPAAS. The HM values are slightly higher for rocks of the Yaryshev–Nagoryany interval and comparable to those inherent in hot tropical continental clays for mudstones in the lower part of the Yaryshev Formation. Average value of index SA for mudstones of the entire section is 5.6 ± 0.7. Mudstones of the Grushka–Nagoryany interval, where SA < SAPAAS, are composed of a more weathered material. The WIP values in mudstones of the Mogilev and Yaryshev formations, as well as in the upper part of the Zbruch Formation, correspond to the interval of their values between the PAAS and average Archean granite. Clay rocks of other formations have WIP ≤ WIPPAAS. Average CIA value (71 ± 4) for mudstones virtually corresponds to the CIA value (70), which separates the sediments of cold/arid and warm/humid climates. Variations in the index CIW value along the section are oriented similarly as CIA variation. The vast majority of mudstones are characterized by PIA > PIAPAAS. The average CPA value is 91 ± 4, which is also typical for PAAS. These and other data suggest the following point: based on a “direct” interpretation of the values of various chemical weathering indexes inherent in the fine-grained clastic rocks, paleoclimate in Podolian Transnistria was rather moderate or warm humid in the Vendian‒Early Cambrian. Comparison of the CIA values of mudstones with the values for the particulate suspended matter in modern rivers suggests that the Vendian‒Early Cambrian climate resembled the dry and humid subtropical or dry tropical type with elements of the humid climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. This term is known well to experts familiar with the monograph (Vendskaya …, 1985].

  2. Early, Middle, and Late Vendian are conditional terms. According to (Chumakov and Sergeev, 2004), they correspond to the Laplandian, Redkinian, and Rovnian horizons (regional stages).

  3. Scrutinization of the composition and stable isotopes in carbonate minerals from the Ediacaran rocks in the western EEP from Arkhangel’sk to Ukraine and Moldova revealed that the stable marine or marine environment-influenced sedimentation setting existed during the above period only in Podolia, Moldova, and northwetern part of the platform (Bojanovski et al., 2021). During this period, the central part of this region was probably dominated by the continental sedimentation, and the marine or brackish waters rarely invaded these areas.

REFERENCES

  1. Babechuk M.G., Widdowson M., and Kamber B.S., Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India, Chem. Geol., 2014, vol. 363, pp. 56–75.

    Article  Google Scholar 

  2. Ban, J.-D., Moon, S.-W., Lee, S.-W., et al., Physical and chemical weathering indices for biotite granite and granitic weathered soil in Gyeongju, J. Eng. Geol., 2017, vol. 27, pp. 451–462.

    Google Scholar 

  3. Barshad, I., The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks, Proc. Int. Clay Conf., Heller, L. and Weiss, A., Eds., Israel Progr. Sci. Transl., Jerusalem, 1966, pp. 167–173.

  4. Birkeland, P.W., Soils and Geomorphology, New York: Oxford Univ. Press, 1984.

    Google Scholar 

  5. Bojanowski, M.J., Marciniak-Maliszewska, B., Srodon, J., and Liivamagi, S., Extensive non-marine depositional setting evidenced by carbonate minerals in the Ediacaran clastic series of the western East European Craton, Precambrian Res., 2021, vol. 365, p. 106379.

    Article  Google Scholar 

  6. Bouchez, J., Lupker, M., Gaillardet, J., et al., How important is it to integrate riverine suspended sediment chemical composition with depth? Clues from Amazon River depth-profiles, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 6955–6970.

    Article  Google Scholar 

  7. Buggle, B., Glaser, B., Hambach, U., et al., An evaluation of geochemical weathering indices in loess-paleosol studies, Quat. Int., 2011, vol. 240, pp. 12–21.

    Article  Google Scholar 

  8. Ceryan, S., Weathering indices used in evaluation of the weathering state of rock material, Handbook of Research on Trends and Digital Advances in Engineering Geology, Ceryan, N. and Hershey, M., Eds., PA: IGI Global, 2018, pp. 132–186.

    Google Scholar 

  9. Chetelat, B., Liu, C.Q., Wang, Q.L., and Zhang, G.P., Assessing the influence of lithology on weathering indices of the Changjiang River sediments, Chem. Geol., 2013, vol. 359, pp. 108–115.

    Article  Google Scholar 

  10. Chittleborough, D.J., Indices of weathering for soils and paleosols formed on silicate rocks, Aust. J. Earth Sci., 1991, vol. 38, pp. 115–120.

    Article  Google Scholar 

  11. Chumakov, N.M., Global climates of the Vendian, Russ. J. Earth Sci., 2003, vol. 5, pp. 385–399.

    Article  Google Scholar 

  12. Chumakov, N.M., Oledeneniya Zemli: Istoriya, stratigraficheskoe znachenie i rol' v biosfere (Glaciations in the Earth: History, Stratigraphic Significance, and Role in the Biosphere), Moscow: GEOS, 2015.

  13. Chumakov, N.M. and Sergeev, V.N., Problem of the climatic zonation in the Late Precambrian: Climate and biospheric events, in Klimat v epokhi krupnykh biosfernykh perestroek (Climate During Great Biospheric Rearrangements), Semikhatov, M.A. and Chumakov, N.M., Eds., Moscow: Nauka, 2004, pp. 271–289.

  14. Colman, S.M., Chemical weathering of basalts and andesites: evidence from the weathering rinds, US Geol. Surv. Pap., 1982, vol. 1246, p. 52.

    Google Scholar 

  15. Condie, K.C., Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales, Chem. Geol., 1993, vol. 104, pp. 1–37.

    Article  Google Scholar 

  16. Cox, R., Lowe, D.R., and Cullers, R.L., The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern united states, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 2919–2940.

    Article  Google Scholar 

  17. Cullers, R.L., The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies, Lithos, 2000, vol. 51, pp. 181–203.

    Article  Google Scholar 

  18. Darmody, R.G., Thorn, C.E., and Allen, C.E., Chemical weather and boulder mantles, Kärkevagge, Swedish Lapland, Geomorphology, 2005, vol. 67, pp. 159–170.

    Article  Google Scholar 

  19. De Jayawardena, U.S. and Izawa, E., A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka, Engin. Geol., 1994, vol. 36, pp. 303–310.

    Article  Google Scholar 

  20. Deconinck, J.F., Hesselbo, S.P., Debuisser, N., et al., Environmental controls on clay mineralogy of an Early Jurassic mudrock (Blue Lias Formation, southern England), Int. J. Earth Sci., 2003, vol. 92, pp. 255–266.

    Article  Google Scholar 

  21. Dellinger, M., Gaillardet, J., Bouchez, J., et al., Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion, Earth Planet. Sci. Lett., 2014, vol. 401, pp. 359–372.

    Article  Google Scholar 

  22. Dinis, P.A., Garzanti, E., Hahn, A., et al., Weathering indices as climate proxies. A step forward based on Congo and SW African river muds, Earth-Sci. Rev., 2020, vol. 201. 103039. https://doi.org/10.1016/j.earscirev.2019.103039

    Article  Google Scholar 

  23. Dodatko, A.D., Abstract of DSc. (Geol.-Miner.) Dissertation, Kiev: IGN AN USSR, 1976.

  24. Duffin, M.E., Lee, M-C., Klein, G. deV., and Hay, R.L., Potassic diagenesis of Cambrian sandstones and Precambrian granitic basement in UPH-3 deep hole, upper Mississippi Valley, U.S.A., J. Sedim. Petrol., 1989, vol. 59, pp. 848–861.

    Google Scholar 

  25. Duzgoren-Aydin, N.S., Aydin, A., and Malpas, J., Reassessment of chemical weathering indices: case study of pyroclastic rocks of Hong Kong, Engin. Geol., 2002, vol. 63, pp. 99–119.

    Article  Google Scholar 

  26. Ehrmann, W., Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics, Palaeogeogr, Palaeoclimatol. Palaeoecol., 1998, vol. 139, pp. 213–231.

    Article  Google Scholar 

  27. Esaki, T. and Jiang, K., Comprehensive study of the weathered condition of welded tuff from a historic stone bridge in Kagoshima, Japan, Engin. Geol., 2000, vol. 55, pp. 341–350.

    Article  Google Scholar 

  28. Eswaran, H., Stoops, G., and De Paepe R., A contribution to the study of soil formation on Isla Santa Cruz, Galapagos, Pedologie, 1973, vol. 23, pp. 100–122.

    Google Scholar 

  29. Fedo, C.M., Nesbitt, H.W., and Young, G.M., Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance, Geology, 1995, vol. 23, pp. 921–924.

    Article  Google Scholar 

  30. Fedonkin, M.A., Kholodnaya zarya zhivotnoi zhizni (Chilly Dawn of Animal Life), Priroda, 2000, no.9, pp. 3–11.

  31. Francovschi, I., Grădinaru, E., Roban, R.-D., et al., Rare earth element (REE) enrichment of the late Ediacaran Kalyus Beds (East European Platform) through diagenetic uptake, Geochemistry, 2020, vol. 80. 125612. https://doi.org/10.1016/j.chemer.2020.125612

    Article  Google Scholar 

  32. Francovschi, I., Grădinaru, E., Li H., Shumlyanskyy, L., and Ciobotaru, V., U–Pb geochronology and Hf isotope systematics of detrital zircon from the late Ediacaran Kalyus Beds (East European Platform): palaeogeographic evolution of southwestern Baltica and constraints on the Ediacaran biota, Precambrian Res., 2021, vol. 355. 106062. https://doi.org/10.1016/j.precamres.2020.106062

    Article  Google Scholar 

  33. Gaillardet, J., Dupré, B., Louvat, P., and Allègre C.J., Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 1999, vol. 159, pp. 3–30.

    Article  Google Scholar 

  34. Gallet, S., Jahn, B.M., and Torii, M., Geochemical characterization of the Luochuan loess-paleosol sequence, China and paleoclimatic implications, Chem. Geol., 1996, vol. 133, pp. 67–88.

    Article  Google Scholar 

  35. Garzanti, E. and Resentini, A., Provenance control on chemical indices of weathering (Taiwan river sands), Sediment. Geol., 2016, vol. 336, pp. 81–95.

    Article  Google Scholar 

  36. Garzanti, E., Andò, S., France-Lanord, C., et al., Mineralogical and chemical variability of fluvial sediments. 1. Bedload sand (Ganga-Brahmaputra, Bangladesh), Earth Planet. Sci. Lett., 2010, vol. 299, pp. 368–381.

    Article  Google Scholar 

  37. Garzanti, E., Andò, S., France-Lanord, C., et al., Mineralogical and chemical variability of fluvial sediments. 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh), Earth Planet. Sci. Lett., 2011, vol. 302, pp. 107–120.

    Article  Google Scholar 

  38. Garzanti, E., Padoan, M., Setti, M., et al., Weathering geochemistry and Sr-Nd isotope fingerprinting of equatorial upper Nile and Congo muds, Geochem. Geophys. Geosyst., 2013, vol. 14, pp. 292–316.

    Article  Google Scholar 

  39. González-Álvarez, I. and Kerrich, R., Weathering intensity in the Mesoproterozoic and modern large-river systems: A comparative study in the Belt-Purcell Supergroup, Canada and USA, Precambrian Res., 2012, vol. 208–211, pp. 174–196.

    Article  Google Scholar 

  40. Grazhdankin, D.V., Marusin, V.V., Meert, J., et al., Kotlin regional stage in the South Urals, Dokl. Earth Sci., 2011, vol. 440, no. 2, pp. 1221–1226.

    Article  Google Scholar 

  41. Gritsenko, V.P., Upper Devonian terrigenous (sandy–clayey) formation in Podolia, Zb. Nauk. Prats. Inst. Geol. Nauk NAN Ukr., Kiev: IGN NAN Ukr., 2018, vol. 11, pp. 38–45.

    Google Scholar 

  42. Gritsenko, V.P., Diversity of the Vendian fossils in Podolia (western Ukraine), in GEO&BIO, National Natural History Museum, 2020, no. 19, pp. 3–19.

  43. Gu, X.X., Liu, J.M., Zheng, M.H., et al., Provenance and tectonic setting of the Proterozoic turbidites in Hunan (South China): geochemical evidence, J. Sedim. Res., 2002, vol. 72, pp. 393–407.

    Article  Google Scholar 

  44. Guo, Y., Yang, S., Su, N., et al., Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices, Geochim. Cosmochim. Acta, 2018, vol. 227, pp. 48–63.

    Article  Google Scholar 

  45. Hamer, J.M.M., Sheldon, N.D., Nichols, G.J., and Collinson, M.E., Late Oligocene–Early Miocene palaeosols of distal fluvial systems, Ebro Basin, Spain, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 247, pp. 220–235.

    Article  Google Scholar 

  46. Harnois, L., The CIW index: a new chemical index of weathering, Sediment. Geol., 1988, vol. 55, pp. 319–322.

    Article  Google Scholar 

  47. Harrassowitz, H.L., Material und Versuch Erdgeschichtlicher Auswertung, in Fortschr. Geol. Paleont., 1926, vol. 4, 14 p.

    Google Scholar 

  48. Haskins, D., Chemical and mineralogical weathering indices as applied to a granite saprolite in South Africa, 10th IAEG Congr., Geol. Soc. London, 2006, Paper 465.

  49. Hessler, A.M., Zhang, J., Covault, J., and Ambrose, W., Continental weathering coupled to Paleogene climate changes in North America, Geology, 2017, vol. 45, pp. 911–914.

    Article  Google Scholar 

  50. Hong, H., Li, Z., Xue, H., et al., Oligocene clay mineralogy of the Linxia Basin: evidence of paleoclimatic evolution subsequent to the initial stage uplift of the Tibetan Plateau, Clays Clay Miner., 2007, vol. 55, pp. 491–503.

    Article  Google Scholar 

  51. Irfan, T.Y., Mineralogy, fabric properties and classification of weathered granites in Hong Kong, Quart. J. Engin. Geol., 1996, vol. 29, pp. 5–35.

    Article  Google Scholar 

  52. Irfan, T.Y., Characterization of weathered volcanic rocks in Hong Kong, Quart. J. Engin. Geol., 1999, vol. 32, pp. 317–348.

    Article  Google Scholar 

  53. Jenny, H., Behavior of potassium and sodium during the process of soil formation, Missouri Agric. Exp. Station, Res. Bull., 1931, no. 162, 63 p.

  54. Jenny, H., Factors of Soil Formation: A System of Quantitative Pedology, New York: Dover Publ., 1941.

    Book  Google Scholar 

  55. Kahmann, J.A., Seaman, III, J., and Driese, S.G., Evaluating trace elements as paleoclimate indicators: multivariate statistical analysis of late Mississippian Pennington Formation paleosols, Kentucky, USA, J. Geol., 2008, vol. 116, pp. 254–268.

    Article  Google Scholar 

  56. Kalm, V.E., Rutter, N.W., and Rokosh, C.D., Clay minerals and their paleoenvironmental interpretation in the Baoji loess section, southern Loess Plateau, China, Catena, 1996, vol. 27, pp. 49–61.

    Article  Google Scholar 

  57. Kennedy, M., Droser, M, Mayer, L.M., et al., Late Precambrian oxygenation; inception of the clay mineral factory, Science, 2006, vol. 311, pp. 1446–1449.

    Article  Google Scholar 

  58. Kholodov, V.N., Fundamentals of the geochemistry of sedimentary process: Communication 1. Phase transformations as main factor of the material differentiation, Litol. Polezn. Iskop., 1993, no. 2, pp. 3–23.

  59. Klimat v epokhi krupnykh biosfernykh perestroek (Climate During Large Biospheric Rearrangements), Semikhatov, M.A. and Chumakov, N.M., Eds., Moscow: Nauka, 2004.

    Google Scholar 

  60. Kopeliovich, A.V., Epigenez drevnikh tolshch yugo-zapada Russkoi platformy (Epigenesis of Ancient Sequences in the Southwestern Russian Platform), Moscow: Nauka, 1965.

  61. Korenchuk, L.V. and Velikanov, V.A., Material composition of lower formations in the Vendian reference section in the Podolian ledge of the Ukrainian Shield, in Paleogeografiya i litologiya venda i kembriya zapada Vostochno-Evropeiskoi platformy (Vendian and Cambrian Paleogeography and Lithology in the East European Platform), Keller, B.M., Peive, A.V., and Rozanov, A.Yu., Eds., Moscow: Nauka, 1980, pp. 45–56.

  62. Kotova, L.N., Podkovyrov, V.N., and Graunov, O.V., Lithogeochemistry of the Vendian fine-grained clastic rocks in the Nepa arch of the Siberian Platform, Litosfera, 2016, no. 1, pp. 74–87.

  63. Kronberg, B.I. and Nesbitt, H.W., Quantification of weathering, soil geochemistry and soil fertility, J. Soil Sci., 1981, vol. 32, pp. 453–359.

    Article  Google Scholar 

  64. Levykh, N.N. and Makhnach, A.S., Nature of the alteration of Vendian basalts in Belarus, Litasfera, 2001, no. 14, pp. 65–72.

  65. Li, C. and Yang, S., Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins?, Am. J. Sci., 2010, vol. 310, pp. 111–127.

    Article  Google Scholar 

  66. Liivamagi, S., Srodon, J., Bojanowski, M.J., et al., Paleosols on the Ediacaran basalts of the East European Craton: a unique record of paleoweathering with minimum diagenetic overprint, Precambrian Res., 2018, vol. 316, pp. 66–82.

    Article  Google Scholar 

  67. Liivamagi, S., Srodon, J., Bojanowski, M.J., et al., Precambrian paleosols on the Great Unconformity of the East European Craton: An 800 million year record of Baltica’s climatic conditions, Precambrian Res., 2021, vol. 363. 106327. https://doi.org/10.1016/j.precamres.2021.106327

    Article  Google Scholar 

  68. Liu, J., Chen, J., Selvaraj, K., et al., Chemical weathering over the last 1200 years recorded in the sediments of Gonghai Lake, Lvliang Mountains, North China: a high-resolution proxy of past climate, Boreas, 2014, vol. 43, pp. 914–923.

    Article  Google Scholar 

  69. Makhnach, A.S. and Levykh, N.N., Litologiya i geologiya kor vyvetrivaniya, razvitykh na kristallicheskom fundamente Belorussii (Lithology and Geology of Weathering Crusts Developed on the Crystalline Basement in Belarus), Minsk, 1973.

    Google Scholar 

  70. Makrofossilii verkhnego venda Vostochnoi Evropy. Srednee Pridnestrov’e i Volyn (Upper Vendian Macrofossils in East Europe: Middle Dniester and Volyn Regions), Ivantsov, A.Yu., Ed., Moscow: PIN RAN, 2015.

    Google Scholar 

  71. Marques, E.A.G., Amaral Vargas, E.D. Jr., and Leao, M.F., Weathering of rocks in Brazil, Soft Rock Mechanics and Engineering, Kanji, M., He, M., and Ribeiro, L., Eds., Springer Nature Switzerland AG, 2020, pp. 251–290.

    Google Scholar 

  72. Maslov, A.V., Glaciogenic and related sedimentary rocks. Main lithochemical features: Communication 1. Late Archean and Proterozoic, Lithol. Miner. Resour., 2010a, no. 4, pp. 377–397.

  73. Maslov, A.V., Glaciogenic and related sedimentary rocks. Main lithochemical features: Communication 2. Paleozoic and Cenozoic, Lithol. Miner. Resour., 2010b, no. 5, pp. 475–495.

  74. Maslov, A.V., Reconstruction of categories of rivers making up the Riphean basin infill at the conjugation of East European Platform and modern southern Urals, Izv. Vysch. Uchebn. Zaved. Geol. Razv., 2019, no. 5, pp. 28–36.

  75. Maslov, A.V., Possible “actual climatic patterns” of diverse Riphean and Vendian lithostratigraphic units in the Urals, Geol. Vestn., 2021, no.1, pp. 38–45.

  76. Maslov, A.V. and Podkovyrov, V.N., Sources of fine-grained aluminosiliciclastic material for the Vendian–Lower Cambrian rocks of the Podolian Transnistria: A synthesis of lithogeochemical data, Stratigr. Geol. Correl., 2022, vol. 30, no. 3, pp. 127–146.

    Article  Google Scholar 

  77. Maslov, A.V. and Shevchenko, V.P., REE–Th systematics of the suspended particulate matter and bottom sediments from the mouth zones of the World rivers of different categories/classes and some large Russian Arctic rivers, Geochem. Int., 2019, vol. 64, no. 1, pp. 56–73.

    Article  Google Scholar 

  78. Maslov, A.V., Krupenin, M.T., and Gareev, E.Z., Lithological, lithochemical, and geochemical indicators of paleoclimate: Evidence from Riphean of the southern Urals, Lithol. Miner. Resour., 2003, no. 5, pp. 427–446.

  79. Maslov, A.V., Podkovyrov, V.N., Gareev, E.Z., and Graunov, O.V., Paleoclimate changes in the Late Precambrian: Evidence from the Upper Precambrian section of the South Urals, Lithol. Miner. Resour., 2016, no. 2, pp. 117–125.

  80. Maslov, A.V., Podkovyrov, V.N., and Grazhdankin, D.V., Alteration pattern of some lithogeochemical indicators of the sedimentation setting in the temporal vicinity of the Kotlin Crisis, with Vendian sections in Podolia as example), in Ezhegodnik-2016 (Yearbook-2016), Yekaterinburg: IGG UrO RAN, 2017, pp. 68–75.

  81. Maynard, J.B., Chemistry of modern soils as a guide to interpreting Precambrian paleosols, J. Geol., 1992, vol. 100, pp. 279–289.

    Article  Google Scholar 

  82. Maynard, J.B., Sutton, S.J., Robb, L.J., et al., A paleosol developed on hydrothermally altered granite from the hinterland of the Witwatersrand Basin: characteristics of a source of basin fill, J. Geol., 1995, vol. 103, pp. 357–377.

    Article  Google Scholar 

  83. McLennan, S.M., Weathering and global denudation, J. Geol., 1993, vol. 101, pp. 295–303.

    Article  Google Scholar 

  84. Merrill, G.P., A Treatise on Rocks, Rock-Weathering and Soils, Ann. Arbor: Univ. Michigan Libr., 1906.

    Google Scholar 

  85. Meshcherskii, A.A., Kharin, G.S., and Chegesov, V.K., Precambrian weathering crust of the crystalline basement in the Kaliningrad district, Lithol. Miner. Resour., 2003, no. 1, pp. 18–54.

  86. Metody rekonstruktsii paleoklimatov (Methods for the Climate Reconstruction), Moscow: Nauka, 1985.

  87. Mikhailov, B.M. and Kulikova, G.V., Fatsial’nyi analiz kor vyvetrivaniya (The Facies Analysis of Weathering Crusts), Leningrad: Nedra, 1977.

  88. Minyuk, P.S., Borkhodoev, V.Ya., Goryachev, N.A., and Venrikh, F., Geochemical characteristics of sediments in Lake El’gygytgyn (Chukotka)—indicators of provenances and paleoclimatic changes in the Neopleistocene, in Sovremennye problemy geokhimii (Modern Problems of Geochemistry), Irkutsk: IG SO RAN, 2012, vol. 1, pp. 206–209.

  89. Nadłonek, W. and Bojakowska, I, Variability of chemical weathering indices in modern sediments of the Vistula and Odra rivers (Poland), Appl. Ecol. Environm. Res., 2018, vol. 16, pp. 2453–2473.

    Article  Google Scholar 

  90. Nesbitt, H.W., Mobility and fractionation of rare earth elements during weathering of a granodiorite, Nature, 1979, vol. 279, pp. 206–210.

    Article  Google Scholar 

  91. Nesbitt, H.W., Diagenesis and metasomatism of weathering profiles, with emphasis on Precambrian paleosols, in Weathering, Soils and Paleosols, Martini, I.P. and Chesworth, W., Eds., Netherlands: Elsevier, 1992, pp. 127–152.

    Google Scholar 

  92. Nesbitt, H.W. and Young, G.M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 1982, vol. 299, pp. 715–717.

    Article  Google Scholar 

  93. Nesbitt, H.W. and Young, G.M., Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 1523–1534.

    Article  Google Scholar 

  94. Nesbitt, H.W. and Young, G.M., Formation and diagenesis of weathering profiles, J. Geol., 1989, vol. 97, pp. 129–147.

    Article  Google Scholar 

  95. Parker, A., An index of weathering for silicate rocks, Geol. Mag., 1970, vol. 107, pp. 501–504.

    Article  Google Scholar 

  96. Passchier, S. and Erukanure, E., Palaeoenvironments and weathering regime of the Neoproterozoic Squantum ‘Tillite’, Boston Basin: no evidence of a snowball Earth, Sedimentology, 2010, vol. 57, pp. 1526–1544.

    Article  Google Scholar 

  97. Paszkowski, M., Budzyn, B., Mazur, S., et al., Detrital zircon U-Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, Belarus, Precambrian Res., 2019, vol. 331. 105352. https://doi.org/10.1016/j.precamres.2019.105352

    Article  Google Scholar 

  98. Paszkowski, M., Budzyn, B., Mazur, S., et al., Detrital zircon U-Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, part II: Ukraine, Precambrian Res., 2021, vol. 362. 106282. https://doi.org/10.1016/j.precamres.2021.106282

    Article  Google Scholar 

  99. Pirrus, E.A., Clay minerals in Vendian and Cambrian rocks and their significance for paleogeography and stratigraphy, in Paleogeografiya i litologiya venda i kembriya zapada Vostochno-Evropeiskoi platformy (The Vendian and Cambrian Paleogeography and Lithology in the western East European Platform), Keller, B.M., Peive, A.V., and Rozanov, A.Yu., Eds., Moscow: Nauka, 1980, pp. 97–113.

  100. Podkovyrov, V.N., Kotova, L.N., Golubkova, E.Yu., and Ivanovskaya, A.V., Lithogeochemistry of Vendian fine-grained clastic rocks in the Nepa–Zhuya region of the Siberian Platform, Lithol. Miner. Resour., 2015, no. 4, pp. 299–310.

  101. Podkovyrov, V.N., Maslov, A.V., and Kotova, L.N., Lithochemistry of Upper Vendian–Lower Cambrian clayey rocks in the central part of the Moscow Syneclise: General features of formation, Geochem. Int., 2022, vol. 67, no. 1, pp. 16–32.

    Article  Google Scholar 

  102. Price, J.R. and Velbel, M.A., Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks, Chem. Geol., 2003, vol. 202, pp. 397–416.

    Article  Google Scholar 

  103. Prochnow, S.J., Nordt, L.C., Atchley, S.C., Hudec, M.R., Multi-proxy paleosol evidence for middle and late Triassic climate trends in eastern Utah, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2006, vol. 232, pp. 53–72.

    Article  Google Scholar 

  104. Reiche, P., Graphic representation of chemical weathering, J. Sedim. Petrol., 1943, vol. 13, pp. 58–68.

    Google Scholar 

  105. Retallack, G.J., Bestland, E.A., and Fremd, T., Eocene and Oligocene paleosols and environmental change in central Oregon, GSA Spec. Pap., 344, 2000, 192 p.

  106. Rocha Filho, P., Antunes, F.S., and Falcao, M.F.G., Qualitative influence of the weathering degree upon the mechanical properties of an young gneissic residual soil, Proc. First Int. Conf. Geomech. Trop. Later. Saprol. Soils, Brasilia, 1985, vol. 1, pp. 281–294.

  107. Ronov, A.B. and Khlebnikova, Z.V., The chemical composition of essential genetic types of clays, Geokhimiya, 1961, no. 6, pp. 449–469.

  108. Roy, P.D., Caballero, M., Lozano, R., and Smykatz-Kloss, W., Geochemistry of late Quaternary sediments from Tecocomulco Lake, central Mexico: Implication to chemical weathering and provenance, Geochemistry, 2008, vol. 68, pp. 383–393.

    Article  Google Scholar 

  109. Ruxton, B.P., Measures of the degree of chemical weathering of rocks, J. Geol., 1968, vol. 76, pp. 518–527.

    Article  Google Scholar 

  110. Savko, A.D. and Dodatko, A.D., Kory vyvetrivaniya v geologicheskoi istorii Vostochno-Evropeiskoi platformy (Weathering Crusts in the Geological History of the East European Platform), Voronezh: VGU, 1991. 232.

  111. Shao, J.Q. and Yang, S.Y., Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River basin?, Chin. Sci. Bull., 2012, vol. 57, pp. 1178–1187.

    Article  Google Scholar 

  112. Sheldon, N.D. and Tabor, N.J., Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols, Earth-Sci. Rev., 2009, vol. 95, pp. 1–52.

    Article  Google Scholar 

  113. Short, N.M., Geochemical variations in four residual soils, J. Geol., 1961, vol. 69, pp. 534–571.

    Article  Google Scholar 

  114. Sinitsyn, V.M, Vvedenie v paleoklimatologiyu (Introduction to Paleoclimatology), Leningrad: Nedra, 1980.

  115. Sochava, A.V., Korenchuk, L.V., Pirrus, E.A., and Felitsyn, S.B., Geochemistry of Upper Vendian rocks in the Russian Platform, Litol. Polez. Iskop., 1992, no. 2, pp. 71–89.

  116. Sokur, T.M., Identification of volcanogenic material in Upper Vendian and Lower Cambrian mudstones at the southwestern margin of the East European Platform, in Geokhimiya litogeneza (Geochemistry of Lithogenesis), Syktyvkar: IG Komi NTs UrO RAN, 2014, pp. 89–92.

  117. Sokur, T.M., Petrochemical characteristics and geodynamic formation setting of Upper Vendian sandstones at the southwestern margin of the East European Platform, Geol. Zh., 2008, no. 1, pp. 63–71.

  118. Sokur, T.M. and Figura, L.A., The diagenetic kaolinite mineralization in Vendian mudstones on the southwestern slope of the Ukrainian Shield, in Zb. Nauchn. Trud. Inst. Geol. Nauk NAN Ukr., Kiev: IGN NAN Ukr., 2009, vol. 2, pp. 147–151

    Google Scholar 

  119. Soldatenko, Y., El Albani, A., Ruzina, M., et al., Precise U-Pb age constrains on the Ediacaran biota in Podolia, East European Platform, Ukr. Sci. Rep., 2019, vol. 9, pp. 1–13.

    Article  Google Scholar 

  120. Strakhov, N.M., Osnovy teorii litogeneza (Fundamentals of the Theory of Lithogenesis), Moscow: AN SSSR, 1960, vol. 1; 1960, vol. 2; 1962, vol. 3.

  121. Strakhov, N.M., Tipy litogeneza i ikh evolyutsiya v istorii Zemli (Types of Lithogenesis and Their Evolution in the Earth’s History), Moscow: Gosgeoltekhizdat, 1963.

  122. Strakhov, N.M., Theory of the geochemical process in humid zones, in Geokhimiya osadochnykh porod i rud (Geochemistry of Sedimentary Rocks and Ores), Strakhov, N.M., Ed., Moscow: Nauka, 1968, pp. 102–133.

  123. Stratigrafiya verkhn’ogo proterozoyu, paleozoyu ta mezozoyu Ukraïni (Stratigraphy of the Upper Proterozoic, Paleozoic, and Mesozoic in Ukraine), Gozhik, P.F., Ed., Kiev: Logos, 2013.

    Google Scholar 

  124. Sueoka, T., Identification and classification of granite residual soils using chemical weathering index, in Second Int. Conf. Geomech. Trop. Soils, Singapore. 1988, pp. 55–61.

  125. Sueoka, T., Lee, I.K., Huramatsu, M., and Imamura, S., Geomechanical properties and engineering classification for decomposed granite soils in Kaduna district, Nigeria, Proc. First Int. Conf. Geomech. Trop. Later. Saprol. Soils, Brasilia. 1985, vol. 1, pp. 175–186.

  126. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985.

    Google Scholar 

  127. Timofeev, P.P., Lithology—fundamental section of geological science, in Geonauki v SSSR (Geosciences in the Soviet Union), Krivtsov, A.I. and Volkov, R.I., Eds., Moscow: Nedra, 1992, pp. 125–135.

  128. Timofeev, P.P., Genesis of geological sedimentary formations: Implication for the theory of formational analysis), in Osadochnye basseiny Urala i prilegayushchikh regionov: zakonomernosti stroeniya i minerageniya (Sedimentary Basins in the Urals and Adjacent Regions: Regularities in Structure and Minerageny), Koroteev, V.A., Ed., Yekaterinburg: IGG UrO RAN, 2000, pp. 15–27.

  129. Turgeon, S. and Brumsack, H.-J., Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche basin of central Italy, Chem. Geol., 2006, vol. 234, pp. 321–339.

    Article  Google Scholar 

  130. Velikanov, V.A., The Vendian reference section in Podolia, in Vendskaya sistema. Istoriko-geologicheskoe i paleontologicheskoe obosnovanie (The Vendian System: Historical-Geological and Paleontological Substantiation), Moscow: Nauka, 1985, vol. 2 (Stratigraphic and Geological Processes), pp. 35–67.

  131. Velikanov, V.A., Aseeva, E.A., and Fedonkin, M.A., Vend Ukrainy (The Vendian in Ukraine), Kiev: Nauk. Dumka, 1983.

  132. Velikanov, V.A., Korenchuk, L.V., Kir’yanov, V.V., et al., Vend Podolii (The Vendian in Podolia: Excursion Guidebook), 3rd Int. Symp. Cambr. System and the Vendian/Cambrian Boundary, Kiev: IGN AN USSR, 1990.

  133. Velikanov, V.Ya., The Ukrainian hypostratotype of the Vendian System, Geol. Zh., 2011, no. 1, pp. 42–49.

  134. Vendskaya sistema. Istoriko-geologicheskoe i paleontologicheskoe obosnovanie (The Vendian System: Historical-Geological and Paleontological Substantiation), Sokolov, B.S. and Fedonkin, M.A., Eds., 1985, vol. 2 (Stratigraphy and Geological Processes).

    Google Scholar 

  135. Viers, J., Dupré, B., and Gaillardet, J., Chemical composition of suspended sediments in World rivers: New insights from a new database, Sci. Total Environ., 2009, vol. 407, pp. 853–868.

    Article  Google Scholar 

  136. Visser, J.N.J. and Young, G.M., Major element geochemistry and paleoclimatology of the Permo-Carboniferous glaciogene Dwyka Formation and post-glacial mudrocks in Southern Africa, Palaeogeogr., Palaeoclimat., Palaeoecol., 1990, vol. 81, pp. 49–57.

    Article  Google Scholar 

  137. Vogt, T., Sulitjelmafeltets geologi og petrografi, Norges Geol. Undersok., 1927, vol. 121 (in Norwegian, with English abstract)

  138. Weaver, C.E., Clays, Muds, and Shales (Developments in Sedimentology), Elsevier, 1989, vol. 44.

  139. Yan, Y., Xia, B., Lin, G., et al., Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary, Sediment. Geol., 2007, vol. 197, pp. 127–140.

    Article  Google Scholar 

  140. Yang, S.Y., Li, C.X., Yang, D.Y., and Li, X.S., Chemical weathering of the loess deposits in the lower Changjiang Valley, China, and paleoclimatic implications, Quat. Int., 2004, vol. 117, pp. 27–34.

    Article  Google Scholar 

  141. Yasamanov, N.A., Drevnie klimaty Zemli (Ancient Climates in the Earth), Leningrad: Gidrometeoizdat, 1985.

  142. Yudovich, Ya.E. and Ketris, M.P., Osnovy litokhimii (Fundamentals of Lithogeochemistry), St. Petersb.: Nauka, 2000.

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to N.S. Glushkova for drawing all illustrations in this paper.

Funding

This work was carried out under the State Budget Theme of the Geological Institute, Russian Academy of Sciences (project no. 0135-2019-0043) and the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences (project no. FMUW-2021-0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Maslov or V. N. Podkovyrov.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.V., Podkovyrov, V.N. Chemical Weathering Indexes: Implication for Paleoclimatic Reconstructions, with the Vendian–Lower Cambrian Section of Podolian Transnistria as Example. Lithol Miner Resour 58, 213–234 (2023). https://doi.org/10.1134/S0024490222700043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490222700043

Keywords:

Navigation