Skip to main content
Log in

Lower Maeotian Bryozoan Bioherms of Cape Kazantip, Crimea: A New Concept of the Paleoecological Environment of Their Origin

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The lower Maeotian carbonate encrustation of bryozoan bioherms and local problematic carbonate buildups at Cape Kazantip (Kerch Peninsula) were studied to elucidate their genesis. Analytical (lithological and mineralogical, X-ray diffractometry, scanning electron microscopy, energy dispersive spectrometry, and isotopy) studies have shown that hardness of the bryozoan framework is related to the syndepositional, biologically induced cement around bryozoans and carbonate encrustation of bioherms. In addition to fossilized traces of products of the microbiotic vital activity (bacteriomorphic structures, mineralized biofilms, glycocalyx—an exopolymer substance (IPS), and framboidal pyrite), the carbonate crusts on bryozoan bioherms and mollusk–polychaete minibioherms contain abundant bitumen, strontianite, barite, celestine, Mn-rich calcite (kutnohorite), Mg-calcite, aragonite, dolomite are widespread. Mineralized biofilms include trace elements Fe, Si, Mg, Al, K, Na, Cl, Ba, S, Ni, and Co. The isotopic composition of different carbonate rock types is marked by wide variations of carbon (–2.76…7.17‰) and oxygen (24.20–33.01‰) and manifested in fluctuations of water salinity (16.67–39.74‰). The chemical composition and mineral specificity of rocks, confinement of carbonate crusts and minibioherms to saline waters, and local pattern of their formation suggest the manifestation of near-bottom cold gas-fluid seeps, probably, of a complex chloride-sodium-sulfate-magnesium composition or various modifications of these components in a shallow sea basin, whereas the bryozoan biohermal complex is most likely a near-hydrothermal oasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Andrusov, N.I., Geotectonics of Kerch Peninsula, in Materialy dlya geologii Rossii (Materials on Geology of Russia), St. Petersb., 1893, vol. 16, pp. 63–335.

  2. Andrusov, N.I., Fossil bryozoan reefs in Kerch and Taman peninsulas, Zap. Kiev. O-va Estestvoispyt., 1909, no 1, pp. 1–48.

  3. Andrusov, N.I., The Kerch limestone and its fauna, Zap. Imperat. Sankt-Peterb. Miner. O-va, 1890, Ser. 2, pp. 198–344.

  4. Antoshkina, A.I., Bacteriomorph structures in nodules, a characteristic of euxinic conditions of nodule formation, Paleontol. J., 2018, vol. 52, no. 10, pp. 28–39.

    Article  Google Scholar 

  5. Antoshkina, A.I., Leonova, L.V., Lyutoev, V.P., et al., Traces of bacterial activity in Neogene reefogenic and terrigenous rocks of Cape Kazantip (Crimea), in Geologiya i bioraznoobrazie Tetisa i Vostochnogo Paratetisa (Geology and Biodiversity of the Tethys and Eastern Para-Tethys), Goryach. Klyuch, 2017, pp. 53–57.

  6. Antoshkina, A.I., Shebolkin, D.N., Shmeleva, L.A., et al., Biochemogenic limestones and dolomites in the nanometer scale: Significance for the geological record, Vestn. IG Komi NTs UrO RAN, 2019, no. 8, pp 3–13.

  7. Antoshkina, A.I., Leonova, L.V., and Simakova, Yu.S., The Development of Miocene Biohermal Bryozoan Limestones of Kazantip Cape (Crimea): A New Insight, Dokl. Earth Sci., 2020a, vol. 491, no. 2, pp. 195–198.

    Article  Google Scholar 

  8. Antoshkina, A.I., Dobretsova, I.G., Silaev, V.I., et al., Features and structures of carbonate buildups in the northern zone of the Mid-Atlantic Ridge, in Mater. Vseros. Litolog. Soveshch. “Geologiya rifov”, Syktyvkar: Geoprint, 2020b, pp. 19–22.

    Google Scholar 

  9. Arkhangel’skii, A.D., Blokhin, A.A., Menner, V.V., et al., Brief essay on the geological structure and oil fields in Kerch Peninsula, Trudy GGRU, 1930, no. 13.

  10. Banerjee, S., Bansal, U., and Thorat, A., A review on palaeogeographic implications and temporal variation in glaucony composition, J. Palaeogeogr., vol. 5, no. 1, pp. 43–71.

  11. Beluzhenko E.V. Stratigraphic position and lateral distribution of Miocene bryozoan-algal limestones in North Caucasia, Byull. MOIP. Otd. Geol., 2015, vol. 90, no. 3, pp. 50–61.

    Google Scholar 

  12. Bodon, M., Manganelli, G., and Giusti, F., A survey of the European valvatiform hydrobiid genera, with special reference to Hauffenia Pollonera, 1898 (Gastropoda, Hydrobiidae), Malacologia, 2001, vol. 43, nos. 1/2, pp. 103–215.

    Google Scholar 

  13. Bondarenko, O.V., Blokhina, N.I., and Utescher, T., Major plant biome changes in the Primorye Region (Far East of Russia) during the Paleogene, Botanica Pacifica. J. Plant Sci. Conserv., 2019, vol. 8, no. 1, pp. 3–18.

    Google Scholar 

  14. Braissant, O., Decho, A.W., Dupraz, C., et al., Sulfate-reducing bacteria exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline ph and implication for formation of carbonate minerals, Geobiology, 2007, vol. 5, pp. 401–411.

    Article  Google Scholar 

  15. Brasier, A.T., Rogerson, M.R., Mercedes-Martin, R., et al., A test of the biogenicity criteria established for microfossils and stromatolites on Quaternary tufa and speleothem materials formed in the “twilightzone” at Caerwys, UK, Astrobiology, 2015, vol. 15, no. 10, pp. 883–900.

    Article  Google Scholar 

  16. Brusnitsyn A.I., Starikova E.V., Ignatova M.V., et al. The Nadeiyakha ore occurrence (Pai-Khoi, Russia): An example of ferromanganese metasediments in carbonaceous dolomitic shales, Lithol. Miner. Resour., 2019, no. 2, pp. 159–185.

  17. Chan, M.A., Hinman, N.W., Potter-Mcintyre, S.I., et al. Deciphering biosignatures in planetary contexts, Astrobiology, 2019, vol. 19, no. 9, pp. 1075–1102.

    Article  Google Scholar 

  18. Dara, O.M., Lein, A.Yu., Kozina, N.V., et al., First find of kutnohorite in modern sediments of the South Caspian Basin, Dokl. Earth Sci., 2015, vol. 465, no. 5, pp. 1257–1261.

    Article  Google Scholar 

  19. Derkachev, A.N., Nikolaeva, N.A., Baranov, B.V., et al., Manifestation of carbonate–barite mineralization around methane seeps in the Sea of Okhotsk (the western slope of the Kuril Basin, Oceanology, 2015, vol. 55, no. 3, pp. 390–399.

    Article  Google Scholar 

  20. De Leeuw, A., Bukowski, K., Krijgsman, W., et al., Age of Badenian salinity crisis; impact of Miocene climate variability on the Circum-Mediterranean region, Geology, 2010, vol. 38, no. 8, pp. 715–718.

    Article  Google Scholar 

  21. Dobretsova, I.G., Pseudomorphoses after prismatic forms of organisms in modern volcanics in the Mid-Atlantic Ridge, Vestn.Geonauk, 2020, no. 12, pp. 26–31.

  22. Dubinin A.V., Dubinina E.O. Isotope composition of oxygen and hydrogen in the Black Sea waters as a result of the dynamics of water masses, Oceanology, 2014, vol. 54, no. 6, pp. 713–733.

    Article  Google Scholar 

  23. Flügel, E., Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, Berlin: Springer, 2010.

    Book  Google Scholar 

  24. Gablina, I.F., Popova, E.A., Sadchikova, T.A., Savichev, A.T., Gor’kova, N.V., Os’kina, N.S., and Khusid, T.A., Hydrothermal metasomatic alteration of carbonate bottom sediments in the Ashadze-1 field (13° N Mid-Atlantic Ridge), Geol. Ore Depos., 2014, vol. 56, no. 5, pp. 357–379.

    Article  Google Scholar 

  25. Geologicheskaya karta SSSR masshtaba 1 : 200 000 (Geological Map of the Soviet Union: Scale 1 : 200 000, Ser. Crimea, Sheets L-37-XIX and L-37-XXV, Explanatory Note), Samuleva, V.I. and Balakina, A.A., Compilers; Muratov, M.V., Ed., Kiev, 1973.

  26. Georgieva, M.N., Little, C.T.S., Watson, J., et al., Identification of fossil worm tubes from Phanerozoic hydrothermal vents and cold seeps, J. System. Palaeont., 2017, vol. 17, no. 4, pp. 1–4.

    Google Scholar 

  27. Glazyrin, E.A. and Glazyrina, N.V., Lithological products of methane discharge on the seafloor, Metan v morskikh ekosistemakh (Methane in Marine Ecosystems), Sevastopol, 2014, pp. 42–45.

    Google Scholar 

  28. Goncharova, I.A., Evolution of communities of the brysozoan-algal bioherms in the Upper-Middle Miocene in the Euxinian Caspian Basin, in Geobiosfernye sobytiya v istorii organicheskogo mira (Geobiospheric Events in the History of Organic World), Paleont. O-vo, St. Peterb., 2008, pp. 57–59.

  29. Goncharova, I.A. and Rostovtseva, Yu.V., Development of the carbonate organogenic buildups in the Middle-Late Miocene in the Euxinian Caspian Basin (eastern Para-Tethys), in Rifogennye formatsii i rify v evolyutsii biosfery (Riftogenic Formations and Reefs During the Biosphere Evolution), Moscow: PIN RAN, 2011, pp. 155–178.

  30. Gontar, V.I., Bryozoans in the South Russian seas and relation to salinity, Tr. Zoolog. Inst. RAN, Suppl. 3, 2013, pp. 84–89.

  31. Hodgson, D.M., Bernhardt, A., Clare, M.A., et al., Grand challenges (and great opportunities) in sedimentology, stratigraphy, and diagenesis research, Front. Earth Sci., 2018, vol. 23. https://doi.org/10. 3389/feart.2018.00173.

  32. Huggett, J.M., Minerals: Glauconites and Green Clays, Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2013. https://doi.org/10.1016/B978-0-12-409548-9.028933-1

    Book  Google Scholar 

  33. Il’ina, L.B., Nevesskaya, L.A., and Paramonova, N.P., Zakonomernosti razvitiya mollyuskov v opresnennykh basseinakh neogena Evrazii (pozdnii miotsen-rannii pliotsen) (Regularities in the Mollusc Evolution in Neogene Freshened Basins of Eurasia: Late Miocene–Early Pliocene), Moscow: Nauka, 1976.

  34. Ingram, B.L., Conrad, M.E., and Ingle, J.C., Stable isotope and salinity systematics in estuarine waters and carbonates: San Francisco Bay, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 455–467.

    Article  Google Scholar 

  35. Iskopaemye bakterii i drugie mikroorganizmy v zemnykh porodakh i astromaterialakh (Fossil Bacteria and Other Microorganisms in Terrestrial Rocks and Astroblems), Rozanov, A.Yu. and Ushatinskaya, G.T, Eds., 2011.

  36. James, N.P. and Bourque, P.A., Reefs and mounds, in Facies Models—Response to Sea-Level Change, Walker, N.P. and James, R.G., Eds., Geol. Assoc. Canada, 1992, pp. 323–347.

    Google Scholar 

  37. Kaplov, H.H., Age and formation conditions of Membranipora reefs in Kerch Peninsula, Izv. AN SSSR, Ser. Geol, 1937, no. 6, pp. 1003–1026.

  38. Keith, M.L. and Weber, J.N., Carbon and oxygen isotopic composition of selected limestones and fossils, Geochim. Cosmochim. Acta, 1964, vol. 28, nos. 10/11, pp. 1787–1816.

    Article  Google Scholar 

  39. Kholodov, V.N., Mud volcanoes, their distribution regularities and genesis: Communication 1. Mud volcanic provinces and morphology of mud volcanoes, Lithol. Miner. Resour., 2002, no. 3, pp. 197–209.

  40. Klyukin, A.A., Factors determining the biodiversity in the Kazantip Nature Reserve, Tr. Nikitsk. Botanich. Sada - Nats. Nauchn. Tsentra, 2006, vol. 126, pp. 133–148.

    Google Scholar 

  41. Kopf, A.J., Significance of mud volcanism, Rev. Geophys., 2002, vol. 40, no. 2, pp. 1–52. https://doi.org/10.1029/2000RG000093

    Article  Google Scholar 

  42. Kuleshov, V.N., Evolution of isotopic carbon dioxide–water systems in lithogenesis: Communication 1. Sedimentogenesis and diagenesis, Lithol. Miner. Resour., 2001, no. 5, pp. 429–444.

  43. Kuleshov, V.N., Sedaeva, K.M., Gorozhanin, V.M., et al., Hypostratotype of the Bashkirian stage of the Carboniferous system (Askyn River, Bashkortostan): Lithology, isotopes (δ13C, δ18O), and carbonate depositional settings, Stratigr. Geol. Correl., 2018, vol. 26, no. 6, pp. 698–714.

    Article  Google Scholar 

  44. Kulichenko, V.G., Issue of the age of bryozoan reefs in Kerch Peninsula, Geol. Zh., Kiev: Nauk. Dumka, 1972, vol. 32, pp. 121–126.

    Google Scholar 

  45. Kulichenko, V.G., Formation conditions of bryozoan reefs in the Crimean Late Miocene basin, in Ekologiya bespozvonochnykh tretichnykh morei Ukrainy (Ecology of the Invertebrate Tertiary Seas in the Ukraine), Molyavko, G.I., Ed., 1971.

  46. Kuz’mina, L.Yu., Leonova, L.V., Ryabova, A.S., et al., Microbial mondmilch (moonmilk) communities in the Shul’gan-Tash Cave (Southern Ural) and their participation in the calcium carbonate deposition, in Mineralogiya tekhnogeneza-18 (Mineralogy of Technogenesis – 18), Miass: IMin UrO RAN, 2018, pp. 155–167.

  47. Kuz’mina, O.V. and Volkova, V.S., Stratigraphy and palynological characteristics of Oligocene-Miocene deposits based on the drilling data (borehole 01-BP) in the Omsk area of the Irtysh Region (western Siberia), Novosti Paleotol. Stratigr., 2001, no. 4, pp. 135–141.

  48. Lebedinskii, V.I., S geologicheskim molotkom po Krymu (With a Geological Hammer over Crimea), Moscow: Nedra, 1967.

  49. Lein, A.Yu., Authigenic carbonate formation in the ocean, Lithol. Miner. Resour., 2004, no. 1, pp. 1–31.

  50. Lein, A.Yu. and Ivanov M.V. Biogeokhimicheskii tsikl metana v okeane (Biogeochemical Methane Cycle in the Ocean), Lisitsyn, Ed., Vinograd. Inst. Microbiol., Moscow: Nauka, 2009.

  51. Lein, A., Yu. and Kravchishina, M. D., Barium in the ocean: Minor concentrations but strong effects, Priroda, 2020, no. 11, pp. 46–55.

  52. Leonova, L.V., Glavatskikh, S.P., and Galeev, A.A., New data on the fossil analog of hydrocarbon matter in the Aramashevo Settlement, Middle Ural, in Geokhimiya litogeneza (Geochemistry of Lithogenesis), Syktyvkar: IG Komi Nts UrO RAN, 2014, pp. 245–248.

  53. Leonova, L.V., Simakova, Yu.S., Kuz’mina, L.Yu., et al., Modern concretions. Mineralogical study and experimental approach: Part. Sandy segregations with the bacterial carbonate cement (Volna River, Krasnodarsk region), Vestnik IG Komi NTs UrO RAN, 2015, no. 9, pp. 11–17.

  54. Leonova, L.V., Antoshkina, A.I., and Simakova, Yu.S., Specific minerals in the bryozoan bioherms Polychaeta from limestones (Kazantip Nature Reserve, Crimea), in Geologiya rifov (Geology of Reefs), Syktyvkar: Geoprint, 2020, pp. 71–73.

  55. Lychagin, G.A., Fossil mud volcanoes in Kerch Peninsula, Byull. MOIP. Otd. Geol., 1952, vol. XXVII, no. 4, pp. 3–13.

    Google Scholar 

  56. Mercedes-Martín, R., Rao, A., Rogerson, M., and Sánchez-Román, M., Effects of salinity, organic acids and alkalinity on the growth of calcite spherulites: implications for evaporitic lacustrine sedimentation, Deposit. Rec, 2021, pp. 1–22.

    Google Scholar 

  57. Merkushova, M.Yu. and Zhegallo, E.A., Biomorphic structures in Fe-rich ores of KMA (based on the results of SEM studies), Vestn. VGU. Ser. Geol., 2016, no. 2, pp. 150–154.

  58. Muza, J.P. and Wise, Jr.S.W., An authigenic gypsum, pyrite, and glauconite association in a Miocene deep sea biogenic ooze from the Falkland Plateau, Southwest Atlantic Ocean, Deep-Sea Drill Proc.,1982, vol. 71, pp. 361–375.

    Google Scholar 

  59. Naidin, D.P. and Luzgin, B.K., Ancient ring-shaped reef in Crimea, Priroda. 1968, no. 12, pp. 64–65.

  60. Naidin, D.P. and Teis, R.V., Oxygen isotope composition in water of Mesozoic seas in Eurasia, Byull. MOIP. Otd. Geol., 1977, vol. 52, no. 3, pp. 5–11.

    Google Scholar 

  61. Nevesskaya, L. A., Goncharova, I. A., Il’ina, L. B., et al., Evolutionary transformations of malacofauna in Neogene basins of Para-Tethys: Indicator of the development of island-type ecosystems, Obshch. Biol., 2009, vol. 70, no. 5, pp. 396–414.

    Google Scholar 

  62. Ngwenya, B.T., Bacterial Mineralization. Reference Module in Materials Science and Materials Engineering, School of GeoSciences. Edinburgh: Univ. Edinburgh, 2016. https://doi.org/10.1016/B978-0-12-803581-8.02248-7

  63. Pacton, V., Ariztegui, D., Wacey, D., et al., Going nano: a new step towards understanding the processes governing fresh water ooid formation, Geology, 2012, vol. 40, no. 6, pp. 547–550.

    Article  Google Scholar 

  64. Palcu, D., Golovina, L.A., Vernyhorova, Y.V., et al., Middle Miocene paleoenvironmental crises in Central Eurasia caused by changes in marine gateway configuration, Glob. Planet. Change, 2017, vol. 158, pp. 57–71.

    Article  Google Scholar 

  65. Palcu, D.V., Patina, I.S., Șandric, I., et al., Late Miocene megalake regressions in Eurasia, Sci. Rep., 2021, vol. 11, A. 11471. https://doi.org/10.1038/s41598-021-91001-z

  66. Pirajno, F., Hydrothermal Processes and Mineral Systems. Springer Science+Business Media, 2009.

  67. Pokrovsky, B.G., Melezhik, V.A., Bujakaite, M.I., Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems, Lith. Miner. Resour., 2006, no. 5, pp. 450–474.

  68. Ponomarenko, E.S., Kaneva, N.A., Poshibaev, V.V., and Shevchuk, S.S., Genesis of the silt material in Upper Devonian limestones of the Timan-North Ural region, in Struktura, veshchestvo, istoriya litosfery Timano-Severoural’skogo segmenta (Structure, Matter, and History of Lithosphere in the Timan–North Ural Segment), Syktyvkar: Geoprint, 2013, pp. 151–155.

  69. Popov, S.V., Rostovtseva, Yu.V., Fillippova, N.Yu., et al., Paleontology and stratigraphy of the Middle-Upper Miocene of the Taman Peninsula: Part 1. Description of Key Sections and Benthic Fossil Groups, Paleontol. J., 2016, vol. 50, no. 10, pp. 1039–1206.

    Article  Google Scholar 

  70. Rostovtseva, Yu.V. and Kozyrenko, T.F., Features of the Late Miocene diatomaceous sedimentation in the Kerch-Taman trough, Vestn. MGU, Ser. 4. Geol., 2006, no. 4, pp. 20–29.

  71. Ryabova, A.S., Characteristics of microbial communities in the Shul’gan-Tash, Kinderla, and Aska karst caves, South Urals, Extended Abstract of Ph.D. Dissertaion (Biol.), Ufa, 2020.

    Google Scholar 

  72. Ryabova, A.S., Chervyatsova, O.Ya., Leonova, L.V., et al., Bacterial strains: Speleothem excretions in the Shul’gan-Tash Cave (Kapova, South Ural) that can deposit calcium carbonate minerals, Ekobiotekh. 2019, vol. 2, no. 4, pp. 406–409.

    Google Scholar 

  73. Ryb, U. and Eiler, J.M., Oxygen isotope composition of the Phanerozoic Ocean and a possible solution to the dolomite problem, Proc. Natl. Acad. Sci. USA, 2018, vol. 115, no. 26, pp. 6602–6607.

    Article  Google Scholar 

  74. Shakirov, R.B., Gazogeokhimicheskie polya okrainnykh morei Vostochnoi Azii (Gas-Geochemical Fields in Marginal Seas of East Asia), Moscow: GEOS, 2018.

  75. Shnyukov, E.F., Sobolevskii, Yu.V., Gnatenko, G.I., et al., Gryazevye vulkany Kerchensko-Tamanskoi oblasti. Atlas (Mud Volcanoes in the Kerch–Taman Region), Kiev: Nauk. Dumka, 1986.

  76. Shnyukov, E.F., Kutnii, V.A., Maslakov, N.A., et al., Mineralogy of carbonate sediments in gaseous springs in the Black Sea, in Geol. Polezn. Iskop. Mirov. Okeana, 2006, no. 2, pp. 69–81.

  77. Shopf, T.M., Paleookeanologiya (Paleoceanography), Moscow: Mir, 1982.

  78. Simonov, D.A. and Bryantseva, G.V., Morphostructural analysis during the neotectonic reconstructions of Kerch Peninsula, Byull. MOIP. Otd. Geol., 2018, vol. 93, no. 3, pp. 12–25.

    Google Scholar 

  79. Smart, P.K., The geochemistry of carbonate diagenesis: The past, present and future, Sedimentology, 2015, vol. 62, pp. 1233–1304.

    Article  Google Scholar 

  80. Sokol, E.V. and Kokh, S.N., Reflections of “Eternal Lights”, Nauka Perv. Ruk. 2010, vol 35, no. 5, pp. 53–71.

    Google Scholar 

  81. Sungatullin, R. Kh., Kuleshov, V.N., and Kadyrov, R., Isotope (δ13C and δ18O) compositions of dolomites from the Permian evaporitic sequences of the eastern Russian Plate: Evidence from the Syukeevo gypsum deposit, Lith. Miner. Resour., 2014, no. 5, pp. 406–415.

  82. Teis, R.V. and Naidin, D.P., Paleotermometriya i izotopnyi sostav kisloroda organogennykh karbonatov (Paleothermometry and Isotopic Composition of Oxygen in Carbonates), Moscow: Nauka, 1973.

  83. Tomas, S., Homann, M., Mutti, M., et al., Alternation of microbial mounds and ooid shoals (Middle Jurassic, Morocco): Response to paleoenvironmental changes, Sediment. Geol., 2013, vol. 294, pp. 68–82.

    Article  Google Scholar 

  84. Veis, O.B., Specifics of the formations of late Sarmatian bioherms in Crimea, Abstracts of VI Conf. on Fossil and Recent Bryaozoans, Perm, 1983, pp. 6–7.

  85. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., et al., 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 1999, vol. 161, pp. 59–88.

    Article  Google Scholar 

  86. Vernigorova, Yu.V. and Ryabokon, T.S., The Maikopian (Oligocene–Lower Miocene) deposits in Kerch Peninsula: History of Study, Polemics, and Stratigraphy). Kiev: NAN Ukrainy, 2018.

    Google Scholar 

  87. Vernigorova, Yu.V., Fikolina, L.A., and Obsharskaya, N.N., The structural-facies regionalization of Neogene deposits in Kerch Peninsula, Geol. Zh., 2012, no. 3, pp. 74–94.

  88. Vinogradov, V.I., Carbon and oxygen isotopic composition of the Vendian–Cambrian carbonate rocks and paleoecological reconstructions, Lithol. Miner. Resour., 2008, no. 1, pp. 44–57.

  89. Vinogradov, A.P. Vvedenie v geokhmiyu (Introduction to Geochemistry), Moscow: Nauka, 1967.

  90. Voudouris, P., Economou-Eliopoulos, M., Fossilized bacteria in Fe-Mn-mineralization: Evidence from the Legrena Valley, W. Lavrion Mine (Greece), Minerals, 2018, vol. 8, no. 3, p. 107. https://doi.org/10.3390/min8030107

    Article  Google Scholar 

  91. Vu, B., Chen, M., Russell, J., et al., Bacterial extracellular polysaccharides involved in biofilm formation, Molecules, 2009, vol. 14, pp. 2535–2554.

    Article  Google Scholar 

  92. Werne, J.P., Pancost, R.D., Sinninghe-Damsté, J.S., et al., Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea, Chem. Geol., 2004, vol. 205, nos. 3/4, pp. 367–390.

    Article  Google Scholar 

  93. Zhang, H., Li, Y., Wang, X., et al., Aerobic and anaerobic reduction of birnessite by a novel Dietzia strain, Geochem. Trans, 2015, vol. 16. https://doi.org/10.1186/s12932-015-0026-0

  94. Zhuravleva, I.T., Volkova, K.N., and Bondarev, V.I. The Kazantip atoll and evolution history (Kerch Peninsula), Tr. Inst. Geol. Geofiz SO AN SSSR. 1990, no. 764, pp. 112–128.

  95. Zitter, T., Mud Volcanism and Fluid Emissions in Eastern Mediterranean Neotectonic Zones (Ph.D. Thesis), Amsterdam: Vrije Univ., 2004.

Download references

ACKNOWLEDGMENTS

The authors are very grateful for the determination of fauna to paleontologists A.V. Guzhov (gastropods) and I.A. Goncharova (bivalves) at the Paleontological Institute of the Russian Academy of Sciences and to T.I. Marchenko-Vagapova (diatoms) at the Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences (IGC Komi).

Analytical studies were carried out at the “Geonauka” Center for Collective Use at the Institute of Geology (Syktyvkar) and the “Geoanalitik” Central Research Center, Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences (IGG, RAN, Yekaterinburg).

The authors thank the staff of the Kazantip Nature Reserve for supporting and assisting the studies, as well as N.A. Litvinyuk and V.I. Silaev (Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences), for consulting in the processing of analytical data.

The authors are sincerely grateful to the reviewers for the comments, questions, and useful recommendations during the article preparation for publication.

Funding

This work was carried out under the State Task of the IGC Komi (State Registration no. 1021062311457-5-1.5.6) and the Agreement between IGG RAN (Yekaterinburg) and the Joint Directorate of “Reserved Crimea”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Antoshkina, L. V. Leonova or Yu. S. Simakova.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoshkina, A.I., Leonova, L.V. & Simakova, Y.S. Lower Maeotian Bryozoan Bioherms of Cape Kazantip, Crimea: A New Concept of the Paleoecological Environment of Their Origin. Lithol Miner Resour 57, 543–567 (2022). https://doi.org/10.1134/S0024490222060025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490222060025

Keywords:

Navigation