Skip to main content
Log in

Methane with Abnormally High δ13C and δD Values from the Coastal Hot Springs in Lake Baikal

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

We studied the composition and isotopic characteristics (δ13C and δD) of hydrocarbon gases from the Kotelnikovsky, Zmeiny, and Goryachnisky hot springs located in the coastal zone of Lake Baikal. Of greatest interest is the Zmeiny Spring located on the eastern coast, where the methane has abnormally high values of δ13C (up to +11‰) and δD (up to +267‰). These values are related to the fractionation of carbon and hydrogen isotopes during the oxidation of microbial methane. The δ13C-C1 value (‒40.2‰) in the Goryachinsky Spring can formally indicate the thermogenic origin of methane. However, the modification of carbon isotope composition in this spring due to methane oxidation is more likely, because gas from the Goryachinsky Spring contains the microbial methane as admixture. Isotopic characteristics typical of microbial gases undistorted by secondary oxidation (δ13C-C1 = ‒61.5‰, δD-C1 = ‒230.2‰, δ13C-C2 = ‒56.6‰) are recorded in the Kotelnikovsky Spring northwest of Lake Baikal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bernard, B.B., Brooks, J.M., and Sackett, W.M., Natural gas seepage in the Gulf of Mexico, Earth Planet. Sci. Lett., 1976, vol. 31, no. 1, pp. 48–54.

    Article  Google Scholar 

  2. Borisenko, I.M. and Zamana, L.V., Mineral’nye vody Buryatskoi ASSR (Mineral Waters in the Buryatian ASSR), Ulan-Ude: Buryat. Knizhn. Izd-vo, 1978.

  3. Cadieux, S.B., White, J.R., Sauer, P.E., et al., Large fractionations of C and H isotopes related to methane oxidation in Arctic lakes, Geochim. Cosmochim. Acta, 2016, vol. 187, pp. 141–155.

    Article  Google Scholar 

  4. Coleman, D.D., Risatti, J.B., and Schoell, M., Fractionation of carbon and hydrogen isotopes by methaneoxidizing bacteria, Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 1033–1037.

    Article  Google Scholar 

  5. Cowen, J.P., Wen, X., and Popp, B.N., Methane in aging hydrothermal plumes, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 20, pp. 3563–3571.

    Article  Google Scholar 

  6. Daskalopoulou, K., Calabrese, S., Grassa, F., et al., Origin of methane and light hydrocarbons in natural fluid emissions: A key study from Greece, Chem. Geol., 2018, vol. 479, pp. 286–301.

    Article  Google Scholar 

  7. Etiope, G. and Sherwood, L.B., Abiotic methane on Earth, Rev. Geophys., 2013, vol. 51, no. 2, pp. 276–299.

    Article  Google Scholar 

  8. Etiope, G., Baciu, C.L., and Schoell, M., Extreme methane deuterium, nitrogen and helium enrichment in natural gas from the Homorod seep (Romania), Chem. Geol., 2011, vol. 280, nos. 1–2, pp. 89–96.

    Article  Google Scholar 

  9. Gamo, T., Tunogai, U., Ichibayashi, S., Chiba, H., et al., Microbial carbon isotope fractionation to produce extraordinarily heavy methane in aging hydrothermal plumes over the southwestern Okinawa Trough, Geochem. J., 2010, vol. 44, pp. 477–487.

    Article  Google Scholar 

  10. Golubev, V.A., Konduktivnyi i konvektivnyi vynos tepla v Baikal’skoi riftovoi zone (Conductive and Convective Heat Efflux in the Baikal Rift Zone), Novosibirsk: Geo, 2007.

    Google Scholar 

  11. Kalmychkov, G.V., Egorov, A.V., Kuz’min, M.I., and Khlystov, O.M, Genetic types of methane from Lake Baikal, Dokl. Earth Sci., 2006, vol. 411, no. 9, pp. 1462–1465.

    Article  Google Scholar 

  12. Kinnaman, F.S., Valentine, D.L., and Tyler, S.C., Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 271–283.

    Article  Google Scholar 

  13. Kiyosu, Y. and Imaizumi, S., Carbon and hydrogen isotope fractionation during oxidation of methane by metal oxides at temperatures from 400°C to 530°C, Chem. Geol., 1996, vol. 133, pp. 279–287.

    Article  Google Scholar 

  14. Liu, Y. and Whitman, W.B., Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea, Ann. NY Acad. Sci., 2008, vol. 1125, pp. 171–189.

    Article  Google Scholar 

  15. Lomonosov, I.S., Geokhimiya i formirovanie sovremennykh gidroterm Baikal’skoi riftovoi zony (Geochemistry and Formation of Recent Hydrothermal Systems in the Baikal Rift Zone), Novosibirsk: Nauka, 1974.

  16. Milkov, A.V., Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the context of geological settings, Org. Geochem., 2005, vol. 36, pp. 681–702.

    Article  Google Scholar 

  17. Milkov, A.V. and Etiope, G., Revised genetic diagrams for natural gases based on a global dataset of >20 000 samples, Org. Geochem., 2018, vol. 125, pp. 109–120.

    Article  Google Scholar 

  18. Namsaraev, B.B., Khakhinov, V.V., Garmaev, E.Zh., Barkhutova, D.D., et al., Vodnye sistemy Barguzinskoi kotloviny (Water Systems in the Barguza Basin), Ulan-Ude: Buryat. Gos. Univ., 2007.

  19. Ni, Y. and Dai, J., Geochemical characteristics of abiogenic alkane gases, Petrol. Sci., 2009, vol. 6, no. 4, pp. 327–338.

    Article  Google Scholar 

  20. Nishimura, R., Tsunogai, U., Ishibashi, J., et al., Origin of 13C-enriched methane in the crater lake Towada, Japan, Geochem. J., 1999, vol. 33, pp. 277–283.

    Article  Google Scholar 

  21. Plyusnin, A.M., Zamana, L.V, Shvartsev, S.L., et al., Hydrogeochemical features of the composition of nitric thermal waters, Geol. Geofiz., 2013, vol. 54, no. 5, pp. 647–664.

    Google Scholar 

  22. Polyak, B.G., Helium isotopes in groundwaters from fluids of the Baikal rift and its framing: Dynamics of the continental riftogenesis), Ross. Zh. Nauk Zemle, 2000, vol. 2, no. 2, pp. 101–113.

    Google Scholar 

  23. Polyak, B.G., Prasolov, E.M., Tolstikhin, I.N., et al., Helium isotopes in fluids of the Baikal rift zone, Izv. Akad. Nauk SSSR, Ser. Geol., 1992, no. 10, pp. 18–33.

  24. Sklyarov, E.V., Sklyarova, O.A., Lavrenchuk, A.V., et al., Natural pollutants of northern Lake Baikal, Environ. Earth Sci., 2015, vol. 74, pp. 2143–2155.

    Article  Google Scholar 

  25. Taran, Y.A., Kliger, G.A., and Sevastianov, V.S., Carbon isotope effects in the open-system Fischer-Tropsch synthesis, Geochim. Cosmochim. Acta, 2007, vol. 71, p. 4474.

    Article  Google Scholar 

  26. Whiticar, M.J., Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geol., 1999, vol. 161, pp. 291–314.

    Article  Google Scholar 

  27. Yakovlev, D.V., Prasolov, E.M., Petrov, V.V., and Khabarova, A.A., Superheavy carbon isotope in methane from hydrothermal gases at Svyatoi Nos Peninsula, Extended Abstracts, 22nd Symp. Isotope Geochmistry, Moscow, 2019, pp. 542–555.

  28. Zamana, L.V., Isotopes of hydrogen and oxygen in nitrogen hot springs of Baikal rift zone in terms of interaction in the water–rock system, Dokl. Earth Sci., 2012, vol. 442, no. 1, pp. 81–85.

    Article  Google Scholar 

  29. Zamana, L.V., Askarov, Sh.A., Borzenko, S.V., et al., Isotopes of sulfide and sulfate sulfur in nitrogen hot springs of the Bauntov group (Baikal rift zone), Dokl. Earth Sci., 2010, vol. 435, no. 4, pp. 1515–1517.

    Article  Google Scholar 

  30. Zelenkina, T.S., Eshinimaev, B.Ts., Dagurova, O.P., et al., Aerobic methanotrophs in coastal hydrothermal systems of Lake Baikal, Mikrobiologiya, 2009, vol. 78, no. 4, pp. 545–551.

    Google Scholar 

Download references

Funding

This work was accomplished under the State Task of the Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences (program IX.127.1.2 , project no. 0350-2019-0004) in cooperation with the Limnological Institute, Siberian Branch, Russian Academy of Sciences (project no. 0345-2019-0007); the Russian Science Foundation (project no. 18-17-00245, processing of results); and the Japan Society for the Promotion of Science (project no. 26 303 021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. V. Kalmychkov or B. G. Pokrovsky.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmychkov, G.V., Hachikubo, A., Pokrovsky, B.G. et al. Methane with Abnormally High δ13C and δD Values from the Coastal Hot Springs in Lake Baikal. Lithol Miner Resour 55, 439–444 (2020). https://doi.org/10.1134/S0024490220040033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490220040033

Keywords:

Navigation