Skip to main content
Log in

C, О, S, and Sr Isotope Geochemistry and Chemostratigraphy of Ordovician Sediments in the Moyero River Section, Northern Siberian Platform

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The 87Sr/86Sr ratio in gypsum and limestones of the Ordovician section of the Moyero River decreases from the bottom upward from 0.7091‒0.7095 in the Irbukli Formation (Nyaian Regional Stage, ~Lower Ordovician Tremadocian Stage) to 0.7080 in the upper part of the Dzherom Formation (Dolborian Regional Stage, ~Upper Ordovician Katian Stage), which is well consistent with biostratigraphic subdivision of the section and existing concept concerning the strontium isotope evolution of the World Ocean. The most characteristic feature of the carbon isotope curve is decrease of δ13С values in carbonates from weakly positive values (0.5…1.1‰) in the Irbukli Formation (Nyaian Regional Stage) to sharply negative values (–5.4...–5.8‰) in the middle part of the Kochakan Formation (top of the Kimaian Regional Stage, ~end of the Dapingian–base of the Darriwilian Stage). Increase of δ18О from 20‒22‰ to 26‒28‰, the negative correlation of δ13С and δ18О, and decrease of δ34S in gypsum from 30‒32‰ to 22‒24‰ in this interval indicate that the 13С depletion of carbonates was not related to the sulfate reduction and oxidation of organic matter during diagenesis and that the negative δ13С excursion was of primary nature. The presence of negative δ13С anomalies at this stratigraphic level in Ordovician sections of the South and North America (Buggish et al., 2003; Edwards and Saltzman, 2014; McLaughlin et al., 2016) indicates the global or subglobal distribution of this event, which was possibly related to the emergence of the oldest ground vegetation. Against the general decrease of δ13С, the lower part of the section reveals three low-amplitude (1‒2‰) positive excursions, the position of which in general confirms the existing correlation scheme of the Moyero River section with the international scale. The upper part of the section is characterized by the alternation of low-δ13С intervals (from–2 to–3‰) and brief positive excursions with amplitude of 0.5‒1.3‰. The positive δ13С excursion terminating the Ordovician section of the Moyero River correlates with the δ13С excursion in the middle Katian Stage, while the δ13С excursion in the lower part of the Baksian Regional Stage correlates with the excursion marking the Katian–Sandbian boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsaar, L., Kaljo, D., Martma, T., et al., Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history, Palaeogeogr., Palaeoclimat., Palaeoecol., 2010, vol. 294, pp. 189–201.

    Article  Google Scholar 

  • Ainsaar, L., Peep Männik, P., Dronov, A.V., et al., Carbon isotope chemostratigraphy and conodonts of the Middle-Upper Ordovician succession in the Tungus Basin, Siberian Craton, Palaeoworld, 2015, vol. 24, pp. 123–135.

    Article  Google Scholar 

  • Azmy, K., Stouge, S., Jorgen, L., et al., Carbon-isotope stratigraphy of the Lower Ordovician succession in Northeast Greenland: Implications for correlations with St. George Group in western Newfoundland (Canada) and beyond, Sediment. Geol., 2010, vol. 225, pp. 67–81.

    Article  Google Scholar 

  • Banner J.L. and Hanson G.N., Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 3123–3137.

    Article  Google Scholar 

  • Bergström, S.M., Chen, X., Gutiérrez-Marco, J.C., and Dronov, A., The new chronostratigraphic classification of the Ordovician system and its relations to major regional series and stages and to δ13C chemostratigraphy, Lethaia, 2009, vol. 42, pp. 97–107.

    Article  Google Scholar 

  • Bralower, T.J., Thomas, D.J., Zachos, J.C., et al., Highresolution records of the Late Paleocene Thermal Maximum and Caribbean volcanism: Is there a causal link?, Geology, 1997, vol. 25, pp. 963–965.

    Article  Google Scholar 

  • Brand, U. and Veizer, J., Chemical diagenesis of a multicomponent carbonate system–1. Trace elements, J. Sediment. Petr., 1980, vol. 50, pp. 1219–1236.

    Google Scholar 

  • Buggisch, W., Keller, M., and Lehnert, O., Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2003, vol. 195, pp. 357–373.

    Article  Google Scholar 

  • Clark, D.L., Sweet, W.C., Bergström, S.M., et al., Treatise on Invertebrate Paleontology, part W (Miscellanea). Supplement 2 (Conodonta), Kansas: Univ. Kansas Geol. Soc. Am. Press, 1981.

    Google Scholar 

  • Clauer, N., Pierret, M.C., and Chaudhuri, S., Role of subsurface brines in salt balance: the case study of the Caspian Sea and Kara Bogaz Bay, Aquatic Geochem., 2009, vol. 15, pp. 237–261.

    Article  Google Scholar 

  • Cocks, L.R.M. and Torsvik, T.H., Siberia, the wondering northern terrane, and its changing geography through the Paleozoic, Earth-Sci. Rev., 2007, vol. 82, pp. 29–74.

    Article  Google Scholar 

  • Davies, N.S. and Gibling, M.R., Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets, Geology, 2010, vol. 38, no. 1, pp. 51–54.

    Article  Google Scholar 

  • Dronov, A., Late Ordovician cooling event: Evidence from the Siberian Craton, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2013, vol. 389, no. 1, pp. 87–95.

    Article  Google Scholar 

  • Dronov, A.V. and Kushlina, V.B., First find of treaces of Cruziana and Rusophycus in the Ordovician in the Anabar region and its paleogeographic significance, in Diversifikatsiya i etapnost evolyutsii organicheskogo mira v svete paleontologicheskoi letopisi (Diversification and Stagewise Evolution of Organic World in the Paleontological Record), Bogdanov, T.N., Ed., St. Petersburg, 2014, pp. 60–61.

    Google Scholar 

  • Dronov, A.V. and Zaitsev, A.V., Upper Ordovician coldwater carbonates in the Siberian Platform, in Kontesptual’nye problemy litologicheskikh issedovanii v Rossii (Conceptual Problems of Lithological Studies in Russia), Yapaskurt, O.V., Khasanov, R.R, and Sungatullin, R.Kh., Eds., Kazan: Kazan Univ., 2011, pp. 280–284.

    Google Scholar 

  • Dronov, A.V., Kanygin, A.V., Timokhin, A.V., et al., Correlation of eustatic and biotic events in the Ordovician paleobasins of the Siberian and Russian platforms, Paleontol. J., 2009, vol. 43, pp. 1477–1497.

    Article  Google Scholar 

  • Dronov, A., Timokhin, A., and Kanygin, A., Ordovician succession at Moyero River, Siberia: preliminary results of recent investigations, in 4th Ann. Meeting IGCP 591 Abstracts and Field Guide (The Early to Middle Paleozoic Revolution), 2014.

    Google Scholar 

  • Dronov, A.V., Munnecke, A., and Kushlina, V.B., A newtype of cool-water carbonate buildups: Middle Ordovician Moyeronia-Angarella “reefs” of the Siberian Platform, in 12th Int. Symp. Ordovician System. Short Papers and Abstracts, 2015a, pp. 99–100.

    Google Scholar 

  • Dronov, A.V., Kanygin, A.V., Timokhin, A.V., and Gonta, T.V., Ordovician sequence stratigraphy of the Siberian Platform revised, in 12th Int. Symp. Ordovician System. Short Papers and Abstracts, 2015b, pp. 100–101.

    Google Scholar 

  • Edwards, C.T. and Saltzman, M.R., Carbon isotope (δ13Ccarb.) stratigraphy of the Lower-Middle Ordovician (Tremadocian-Darriwilian) in the Great Basin, western United States: Implications for global correlation, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, vol. 399, pp. 1–20.

    Article  Google Scholar 

  • Edwards, C., Saltzman, M.R., Leslie, S.A., et al., Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values, Geol. Soc. Am. Bull., 2015, vol. 127, pp. 1275–1289.

    Article  Google Scholar 

  • Ettensohn, F.R., Origin of the Late Ordovician (mid-Mohawkian) temperate-water conditions on southeastern Laurentia: glacial or tectonic?, in The Ordovician Earth System (Geol. Soc. Am. Spec. Pap.), Finney, S.E. and Berry, W.B.N., Eds, 2010, vol. 466, pp. 163–175.

    Google Scholar 

  • Friedmam, I. and O’Neil, J.R., Compilation of stable isotope fractionation factors of geochemical interest, in Data of Geochemistry, Wash. D.C.: U.S. Gov. Print. Off., 1977.

    Google Scholar 

  • Fritz, R.D., Morgan, W.A., Longacre, S., et al., Introduction, in The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian-Ordovician Sauk Megasequence of Laurentia, Derby, J.R.,Fritz, R.D.,, Eds., AAPG Memoir, 2012, vol. 98, pp. 1–3.

    Google Scholar 

  • Frolov, S.V., Akhmanov, G.G., Bakay, E.A., et al., Meso-Neoproterozoic petroleum systems of the Eastern Siberian sedimentary basins, Precambrian Res., 2015, vol. 259, pp. 95–113.

    Article  Google Scholar 

  • Godderis, Y., Francois, L.M., and Veizer, J., The Early Paleozoic carbon cycle, Earth Planet. Sci. Lett., 2001, vol. 190, pp. 181–196.

    Article  Google Scholar 

  • Halverson, G.P., Hoffman, P.F., Schrag, D.P., et al., Toward a Neoproterozoic composite carbon-isotope record, Geol. Soc. Am. Bull., 2005, vol. 117, nos. 9/10, pp. 1181–1207.

    Article  Google Scholar 

  • Halverson, G.P., Dudas, F.O., Maloof, A.C., and Bowring, S.A., Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 256, pp. 103–129.

    Article  Google Scholar 

  • Halverson, G.P., Wade, B.P., Hurtgen, M.T., and Barovich, K.M., Neoproterozoic chemostratigphy, Precambrian Res., 2010, vol. 182, pp. 337–350.

    Article  Google Scholar 

  • Holland, S.M. and Patzkowsky, M.E., Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the eastern United States, in Paleozoic Sequence Stratigraphy: Views from the North American Craton (Geol. Soc. Am. Spec. Pap.), Witzke, B., Ludvigson, C., and Day, J., Eds., 1996, vol. 306, pp. 117–129.

    Google Scholar 

  • Holser, W.T. and Kaplan, I.R., Isotope geochemistry of sedimentary sulfates, Chem. Geol., 1966, vol. 1, pp. 93–135.

    Article  Google Scholar 

  • Husinec, A. and Bergstrom, S.M., Stable carbon-isotope record of shallow-marine evaporative epicratonic basin carbonates, Ordovician Williston Basin, North America, Sedimentology, 2015, vol. 62, pp. 314–349.

    Google Scholar 

  • Jacobsen, S.B. and Kaufman, A.J., The Sr, C and O isotopic evolution of Neoproterozoic seawater, Chem. Geol., 1999, vol. 161, pp. 37–57.

    Google Scholar 

  • Kaljo, D., Martma, T., and Saadre, T., Post Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 245, pp. 138–155.

    Article  Google Scholar 

  • Kampschulte, A. and Strauss, H., The sulfur isotopic evolution of Phanerozoic sea water based on the analysis of structurally substituted sulfate in carbonates, Chem. Geol., 2004, vol. 204, pp. 255–286.

    Article  Google Scholar 

  • Kanygin, A.V., Yadrenkina, A.G., Timokhin, A.V., et al., Stratigrafiya neftegazonosnykh basseinov Sibiri. Ordovik Sibirskoi platformy (Stratigraphy of Petroliferous Basins in Siberia: Ordovician in the Siberian Platform), Novosibirsk: Geo, 2007.

    Google Scholar 

  • Kanygin, A., Dronov, A., Timokhin, A., and Gonta, T., Depositional sequences and palaeoceanographic change in the Ordovician of the Siberian Craton, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2010a, vol. 296, pp. 285–294.

    Article  Google Scholar 

  • Kanygin, A.V., Koren’ T.N., Yadrenkina, A.G., et al. Ordovician of the Siberian Platform, in The Ordovician Earth System, Finney, S.C. and Berry, W.B.N., Eds., 2010b, vol. 466, pp. 105–117.

    Article  Google Scholar 

  • Kump, L.R. and Garrels, R.M., Modeling of atmospheric O2 in the global sedimentary redox cycle, Am. J. Sci., 1986, vol. 286, pp. 337–360.

    Article  Google Scholar 

  • Kump, L.R., The geochemistry of mass extinction, in Treatise on Geochemistry, 2003, vol. 7, ch. 7.14, pp. 351–367.

    Article  Google Scholar 

  • Kuznetsov, A.B., Semikhatov, M.A., Gorokhov, I.M., et al., Sr Isotope Composition in Carbonates of the Karatau Group, Southern Urals, and Standard Curve of 87Sr/86Sr Variations in the Late Riphean Ocean, Stratigr. Geol. Correlation, 2003, vol. 11, no. 5, pp. 415–449.

    Google Scholar 

  • Kuznetsov, A.B., Krupenin, M.T., Ovchinnikova, G.V., et al., Diagenesis of carbonate and siderite deposits of the Lower Riphean Bakal Formation, the southern Urals: Sr isotopic characteristics and Pb–Pb age, Lithol. Miner. Resour., 2005, no. 3, pp. 195–215.

    Article  Google Scholar 

  • Kuznetsov, A.B., Ovchinnikova, G.V., Semikhatov, M.A., et al., The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka Formation, the Lower Riphean Burzyan Group of the southern Urals, Stratigr. Geol. Correlation, 2008, vol. 16, no. 2, pp. 120–137.

    Article  Google Scholar 

  • Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr Isotope composition of the World Ocean, marginal and inland seas: Implications for the Sr isotope stratigraphy, Stratigr. Geol. Correlation, 2012, vol. 20, no. 6, pp. 501–515.

    Article  Google Scholar 

  • Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotope chemostratigraphy as a yool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian), Stratigr. Geol. Correlation, 2014, vol. 22, no. 6, pp. 553–576.

    Article  Google Scholar 

  • Le Guerroue, E., Allen, P.A., Cozzi, A., et al., 50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean, Terra Nova, 2006, vol. 18, pp. 147–153.

    Google Scholar 

  • Li, D., Shields-Zhou, G.A., Ling, H.-F., and Thirlwall, M., Chemical dissolution methods for strontium isotope stratigraphy: Guidelines for the use of bulk carbonate and phosphorite rocks, Chem. Geol., 2011, vol. 290, pp. 133–144.

    Article  Google Scholar 

  • Ludvigson, G.A., Witzke, B.J., Gonzalez, L.A., et al., Late Ordovician (Turinian-Chatfieldian) carbon isotope excursions and their stratigraphic and paleoceanographic significance, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2004, vol. 210, pp. 187–214.

    Article  Google Scholar 

  • McArthur, J.M., Howarth, R.J., and Shields, G.A., Strontium isotope stratigraphy, in The Geologic Time Scale, Gradstein, F.M., Ogg, J.G.,, Eds., Boston: Elsevier, 2012, pp. 127–144.

    Google Scholar 

  • McLaughlin, P.I., Emsbo, P., Desrochers, A., et al., Refining two kilometers of Ordovician chronostratigraphy beneath Anticosti Island utilizing integrated chemostratigraphy, Can. J. Earth Sci., 2016, vol. 53, no. 8, pp. 865–874.

    Article  Google Scholar 

  • Melezhik, V.A., Fallick, A.E., and Pokrovsky, B.G., Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: the challenges to our understanding of the terrestrial carbon cycle, Precambrian Res., 2005, vol. 137, pp. 131–165.

    Article  Google Scholar 

  • Menner, V.V. and Rozman, Kh.S., Ordovician stratigraphy and paleogeography, in Stratigrafiya v issledovaniyakh Geologicheskogo instituta AN SSSR (Stratigraphy in Studies at the Geological Institute, Russian Academy of Sciences, USSR), Moscow: Nauka, 1980, pp. 69–73.

    Google Scholar 

  • Munnecke, A., Zhang, Y., Liu, X., and Cheng, J., Stable carbon isotope stratigraphy in the Ordovician of South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011, vol. 307, no. 1, pp. 17–43.

    Article  Google Scholar 

  • Myagkova, E.I., Nikiforova, O.I., Vysotskii, A.A., and Ivanovskii, A.B., Stratigrafiya ordovikskikh i siluriiskikh otlozhenii doliny r. Moiero. Sibirskaya platforma (Stratigraphy of Ordovician and Silurian Rocks in the Moeiro Valley: Siberian Platform), Moscow: AN SSSR, 1963.

    Google Scholar 

  • Myagkova, E.I., Nestor, Kh.E., and Einasto, R.E., Razrez ordovika i silura reki Moiero (The Ordovician and Silurian Section of the Moeiro River), Novosibirsk: Nauka, 1977.

    Google Scholar 

  • Och, L.M. and Shields-Zhou, G.A., The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling, Earth-Sci. Rev., 2012, vol. 110, pp. 26–57.

    Article  Google Scholar 

  • Pokrovsky, B.G., Proterozoic–Paleozoic boundary: Isotopic anomalies of the Siberian Platform sections and global environmental changes, Lithol. Mimer. Resour., 1996, no. 4, pp. 333–347.

    Google Scholar 

  • Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Oxygen, strontium, and sulfur isotopic composition in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems, Lithol. Mimer. Resour, 2006a, no. 5, pp. 450–474.

    Article  Google Scholar 

  • Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Oxygen, strontium, and sulfur isotopic composition in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 2. Nature of carbonates with ultralow and ultrahigh δ13S values, Lithol. Mimer. Resour., 2006b, no. 6, pp. 575–587.

    Google Scholar 

  • Pokrovsky, B.G. and Bujakaite, M.I., Geochemistry of C, O, and Sr isotopes in the Neoproterozoic carbonates from the southwestern Patom paleobasin, southern Middle Siberia, Lithol. Mimer. Resour., 2015, no. 2, 144–169.

    Article  Google Scholar 

  • Raevskaya, E., Dronov, A., Servais, T., and Wellman, C.H., Cryptospores from the Katian (Upper Ordovician) of the Tungus basin: the first evidence for early land plants from the Siberian paleocontinent, Rev. Palaeobot. Palynol., 2016, vol. 224, pp. 4–13.

    Article  Google Scholar 

  • Richter, F.M., Rowley, D.B., and DePaolo, D.J., Sr isotope evolution of seawater: the role of tectonics, Earth Planet. Sci. Lett., 1992, vol. 109, pp. 11–23.

    Article  Google Scholar 

  • Ripperdan, R.L., Stratigraphic variation in marine carbonate carbon isotope ratios, Rev. Mineral., 2001, vol. 43, pp. 637–662.

    Article  Google Scholar 

  • Rozman, Kh.S., The Upper Ordovician biostratigraphy and zoogeography in North Asia and North America (based on brachiopods), Tr. GIN AN SSSR, 1977, no. 305.

  • Saltzman, M.R. and Thomas, E., Carbon isotope stratigraphy, in The Geologic Time Scale, Gradstein, F.M., Ogg, J.G., Eds., Boston: Elsevier, 2012, pp. 207–233.

    Chapter  Google Scholar 

  • Saltzman, M.R., Edwards, C.T., Leslie, S.A., et al., Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: implications for stratigraphic resolution, Geol. Soc. Am. Bull., 2014, vol. 126, pp. 1551–1568.

    Article  Google Scholar 

  • Schidlovski, M., Hayes, J.M., and Kaplan, I.R., Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen, in Earth’s Earliest Biosphere: Its Origin and Evolution, New York: Princeton Univ. Press, 1983, pp. 143–186.

    Google Scholar 

  • Scholle, P.A. and Arthur, M.A., Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool, AAPG. Bull., 1980, vol. 64, pp. 67–87.

    Google Scholar 

  • Shields, G.A., Carden, G.A.F., Veizer, J., et al., Sr, C, and O isotope geochemistry of Ordovician brachiopods: A major isotopic event around the Middle-Late Ordovician transition, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 11, pp. 2005–2025.

    Google Scholar 

  • Spooner, E.T., Chapman, H.J., and Smewing, J.D., Strontium isotope contamination and oxidation during ocean floor hydrothermal metamorphism of the ophiolitic rocks of the Troodos Massif, Cyprus, Geochim. Cosmochim. Acta, 1977, vol. 41, no. 7, pp. 873–890.

    Article  Google Scholar 

  • Steemans, P., Le Hérissé. A., Melvin, J., et al. Origin and radiation of the earliest vascular land plants, Science, 2009, vol. 324.

  • Strauss, H., The isotopic composition of sedimentary sulfur through time, Palaeogeogr. Palaeoclim. Paleoecol., 1997, vol. 132, pp. 97–118.

    Article  Google Scholar 

  • Taylor, H.P., Water/rock interaction and origin of H2O in granitic batholith, J. Geol. Soc. London, 1977, vol. 133, pp. 509–558.

    Article  Google Scholar 

  • Thompson, C.K. and Kah, L.C., Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2012, vol. 313/314, pp. 189–214.

    Article  Google Scholar 

  • Tolmacheva, T.Yu. and Dronov, A.V., The lower boundary of the Upper Ordovician in the East European and Siberian platforms, in Geobiosfernye sobytiya i istoriya organicheskogo mira (Geobiospheric Events and History of Organic World: Abstracts of Papers), Bogdanov, T.N. and Krymgol’ts, N.G., Eds., St. Petersburg, 2008, pp. 174–175.

    Google Scholar 

  • Veizer, J. and Compston, W., 87Sr/86Sr composition of seawater during the Phanerozoic, Geochim. Cosmochim. Acta, 1974, vol. 38, pp. 1461–1484.

    Article  Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., et al., 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 1999, vol. 161, pp. 59–88.

    Article  Google Scholar 

  • Vinogradov, V.I., Rol osadochnogo tsikla v geokhimii izotopov sery (Role of the Sedimentary Cycle and Geochemistry of Sulfur Isotope), Moscow: Nauka, 1980.

    Google Scholar 

  • Vinogradov, V.I., Belenitskaya, G.A., Bujakaite, M.I., et al., Isotopic signatures of the deposition and transformation of Lower Cambrian saliferous rocks in the Irkutsk amphitheater: Communication 2. Carbon and oxygen isotopic compositions in carbonates, Lithol. Mimer. Resour., 2006, no. 2, pp. 271–279.

    Article  Google Scholar 

  • Yudovich, Ya.E. and Ketris, M.P., Mineral’nye indikatory litogeneza (Mineral Indicators of Lithogenesis), Syktyvkar: Geoprint, 2008.

    Google Scholar 

  • Zachos, J.C., Rohl, U., Schellenberg, S.A., et al., Extreme acidification of the Atlantic Ocean at the Paleocene-Eocene boundary (~55 Myr), Science, 2005, vol. 308, pp. 1611–1615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Pokrovsky.

Additional information

Original Russian Text © B.G. Pokrovsky, A.V. Zaitsev, A.V. Dronov, M.I. Bujakaite, A.V. Timokhin, O.L. Petrov, 2018, published in Litologiya i Poleznye Iskopaemye, 2018, No. 4, pp. 310–336.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokrovsky, B.G., Zaitsev, A.V., Dronov, A.V. et al. C, О, S, and Sr Isotope Geochemistry and Chemostratigraphy of Ordovician Sediments in the Moyero River Section, Northern Siberian Platform. Lithol Miner Resour 53, 283–306 (2018). https://doi.org/10.1134/S0024490218040053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490218040053

Navigation